留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多场耦合原位拉伸中子衍射实验装置综述

郑海彪 康乐 陈洁 张雪凯

郑海彪, 康乐, 陈洁, 等. 多场耦合原位拉伸中子衍射实验装置综述[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240207
引用本文: 郑海彪, 康乐, 陈洁, 等. 多场耦合原位拉伸中子衍射实验装置综述[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240207
Zheng Haibiao, Kang Le, Chen Jie, et al. A review of multi-field coupled in-situ stretching neutron diffraction experimental devices[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240207
Citation: Zheng Haibiao, Kang Le, Chen Jie, et al. A review of multi-field coupled in-situ stretching neutron diffraction experimental devices[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240207

多场耦合原位拉伸中子衍射实验装置综述

doi: 10.11884/HPLPB202436.240207
基金项目: 国家重点研发计划项目(2020YFA0406201)
详细信息
    作者简介:

    郑海彪,zhenghb@ihep.ac.cn

  • 中图分类号: TL817.3

A review of multi-field coupled in-situ stretching neutron diffraction experimental devices

  • 摘要: 极端环境服役材料的研发一直是航空航天等国家战略发展的“瓶颈”,不同环境因素会影响材料的性能。中子由于其强穿透性、轻元素敏感等特点,可与同步辐射技术互为补充,运用原位装置还原材料在真实工况条件下的受力变形过程,并利用中子探针原位观察材料在服役条件下晶格应变、织构、相变和残余应力的演化。多个国家的中子谱仪均配备了不同的原位拉伸装置,实现在不同的加载环境下对样品进行原位应力加载,对样品材料的微观结构进行测试分析,能够解决材料工程领域的重要科学机理问题,进而推动材料的发展应用。介绍了国内外不同中子源谱仪原位拉伸装置的情况,重点阐述了应用于中子衍射技术的多场耦合原位拉伸装置的设计原理与结构特点,凸显了工程材料研究的发展方向。
  • 图  1  拉伸装置中子原位实验的设计原理图

    Figure  1.  Design principle diagram of neutron in-situ experiment in stretching device

    图  2  Vulcan卧式拉伸装置常温原位实验原理图

    Figure  2.  Principle diagram of in-situ experiment at room temperature using horizontal stretching device of Vulcan

    图  3  锂电池原位中子衍射测量的原理图

    Figure  3.  Principle diagram of in-situ neutron diffraction measurement for lithium batteries

    图  4  实验的设定及样品装夹于加载装置并放置于谱仪平台[26]

    Figure  4.  Experimental setup and sample clamping in the loading device and placed on the spectrometer platform[26]

    图  5  欧拉环加载原位中子衍射测量的原理图

    Figure  5.  Schematic diagram of in-situ neutron diffraction measurement for loading with O-ring

    图  6  磁场耦合拉伸实验测量的原理示意图

    Figure  6.  Schematic diagram of the principle of magnetic field coupling stretching experiment measurement

    图  7  SMARTS的低温耦合拉伸装置原位中子衍射测量的原理图

    Figure  7.  Schematic diagram of in-situ neutron diffraction measurement using low-temperature coupled stretching device of SMARTS

    图  8  小角谱仪低温耦合拉伸装置原位中子衍射测量的原理图

    Figure  8.  Principle diagram of in-situ neutron diffraction measurement using low-temperature coupled stretching device of SANS

    图  9  Vulcan高温耦合拉伸装置原位中子衍射测量的原理图

    Figure  9.  Principle diagram of in-situ neutron diffraction measurement using high-temperature coupled stretching device of Vulcan

    图  10  磁场耦合原位拉伸装置及其实验原理图

    Figure  10.  Diagram of magnetic field coupling in-situ stretching device and its experimental analysis

    表  1  不同加热方式的优缺点

    Table  1.   Advantages and disadvantages of different heating methods

    heating method advantage disadvantage
    heating element you can choose different models based on
    different temperature ranges
    low heating efficiency
    thermal
    induction coil
    the heating efficiency is over 80%, and it can be heated to extremely high temperatures with minimal impact on the surrounding temperature there is a temperature gradient change around it
    DC heating DC current has a fast heating speed and can heat up to extremely high temperatures, with little impact on the surrounding temperature poor heating effect on samples with good conductivity
    halogen lamp the heating speed is fast and can reach extremely high temperatures, with little impact on the surrounding temperature halogen lamps need to be placed around the sample, which
    may require gas protection such as vacuum
    laser the heating speed is fast and can reach extremely high temperatures, with little impact on the surrounding temperature point light source heating with temperature gradient
    下载: 导出CSV

    表  2  部分拉伸装置的对比表

    Table  2.   Comparison of partial stretching devices

    subordinate
    device
    neutron
    instrument
    loading
    structure
    maximum
    load
    sample
    environment
    loading
    method
    American Spallation Neutron Source (SNS)Vulcanhorizontal uniaxial biaxial stretching 1100 kNnormal atmospheric temperaturestretching or compressing
    horizontal uniaxial biaxial stretching 2100 kN
    400 N·m
    electrochemistrytension compression, fatigue, creep, and torsion
    Spallation Neutron Source, UK (ISIS)Engin-Xvertical uniaxial uniaxial tension50 kNnormal atmospheric temperaturetension, compression, fatigue
    Los Alamos National Laboratory, USA(LANSCE)SMARTSuniaxial biaxial stretching250 kNlow temperaturepull and press
    Japan High Current Proton Accelerator Facility
    (J-PARC)
    TAKUMIhorizontal uniaxial
    uniaxial tension
    50 kNlow temperature, high temperaturepull and press
    China Academy of Engineering Physics Mianyang Research Reactor (CMRR)RSNDhorizontal uniaxial
    uniaxial tension
    2.5 kNlow temperaturepull and press
    China Spallation Neutron Source (CSNS)CSNSvertical or horizontal50 kNhigh temperature, low temperature, magnetic fieldtension, compression, fatigue
    下载: 导出CSV
  • [1] 常可可, 陈雷雷, 周若男, 等. 极端环境表面工程及其共性科学问题研究进展[J]. 中国机械工程, 2022, 33(12):1388-1417

    Chang Keke, Chen Leilei, Zhou Ruonan, et al. Progresses of surface engineering in extreme environments and its common scientific problems[J]. China Mechanical Engineering, 2022, 33(12): 1388-1417
    [2] 常可可, 王立平, 薛群基. 极端工况下机械表面界面损伤与防护研究进展[J]. 中国机械工程, 2020, 31(2):206-220 doi: 10.3969/j.issn.1004-132X.2020.02.006

    Chang Keke, Wang Liping, Xue Qunji. Progresses of damage and protection for surfaces and interfaces in machinery under extreme operating conditions[J]. China Mechanical Engineering, 2020, 31(2): 206-220 doi: 10.3969/j.issn.1004-132X.2020.02.006
    [3] 赵传东, 李金燕, 张欢. 耐高温材料在航空发动机上的应用研究[J]. 内燃机与配件, 2021(18):55-56 doi: 10.3969/j.issn.1674-957X.2021.18.020

    Zhao Chuandong, Li Jinyan, Zhang Huan. Research on application of high temperature materials in aero-engine[J]. Internal Combustion Engine & Parts, 2021(18): 55-56 doi: 10.3969/j.issn.1674-957X.2021.18.020
    [4] Lin Qingyun, Liu Junpeng, An Xianghai, et al. Cryogenic-deformation-induced phase transformation in an FeCoCrNi high-entropy alloy[J]. Materials Research Letters, 2018, 6(4): 236-243. doi: 10.1080/21663831.2018.1434250
    [5] Bae J W, Kim J G, Park J M, et al. In situ neutron diffraction study of phase stress evolution in a ferrous medium-entropy alloy under low-temperature tensile loading[J]. Scripta Materialia, 2019, 165: 60-63. doi: 10.1016/j.scriptamat.2019.02.027
    [6] Wang Yiqiang, Liu Bin, Yan Kun, et al. Probing deformation mechanisms of a FeCoCrNi high-entropy alloy at 293 and 77 K using in situ neutron diffraction[J]. Acta Materialia, 2018, 154: 79-89. doi: 10.1016/j.actamat.2018.05.013
    [7] Kim J G, Enikeev N A, Seol J B, et al. Superior strength and multiple strengthening mechanisms in nanocrystalline TWIP steel[J]. Scientific Reports, 2018, 8: 11200. doi: 10.1038/s41598-018-29632-y
    [8] De Cooman B C, Estrin Y, Kim S K. Twinning-induced plasticity (TWIP) steels[J]. Acta Materialia, 2018, 142: 283-362. doi: 10.1016/j.actamat.2017.06.046
    [9] Hany S, Milochova M, Littrell K, et al. Advanced characterization of cryogenic 9Ni steel using synchrotron radiation, neutron scattering and 57Fe Mössbauer spectroscopy[J]. Materials & Design, 2018, 146: 219-227.
    [10] 贾双珠, 李长安, 解田, 等. 低温超导材料研究进展[J]. 广州化工, 2018, 46(23):15-18 doi: 10.3969/j.issn.1001-9677.2018.23.011

    Jia Shuangzhu, Li Chang'an, Xie Tian, et al. Research progress on cryogenic superconducting[J]. Guangzhou Chemical Industry, 2018, 46(23): 15-18 doi: 10.3969/j.issn.1001-9677.2018.23.011
    [11] Nishida M, Jing Tian, Muslih M R, et al. In situ stress measurement of fiber reinforced composite in low temperature state by neutron diffraction[J]. Modern Physics Letters B, 2015, 29: 1540037. doi: 10.1142/S0217984915400370
    [12] Lebaudy A L, Pesci R, Fendler M. X-ray diffraction residual stress measurement at room temperature and 77 K in a microelectronic multi-layered single-crystal structure used for infrared detection[J]. Journal of Electronic Materials, 2018, 47(11): 6641-6648. doi: 10.1007/s11664-018-6560-7
    [13] Duperrex L, Pesci R, Le Boterf P, et al. Simulation and measurement of residual stress and warpage in a HgCdTe-based infrared detector at 100K[J]. Materials Science and Engineering: A, 2021, 813: 141148. doi: 10.1016/j.msea.2021.141148
    [14] 杨祖坤. 金属铍的中子衍射应力分析研究[D]. 北京: 中国工程物理研究院, 2018

    Yang Zukun. Study on neutron diffraction stress analysis of beryllium metal[D]. Beijing: China Academy of Engineering Physics, 2018
    [15] Hutchings M T, Krawitz A D. Measurement of residual and applied stress using neutron diffraction[M]. Dordrecht: Springer, 1992.
    [16] Hutchings M T, Withers P J, Holden T M, et al. Introduction to the characterization of residual stress by neutron diffraction[M]. Boca Raton: CRC Press, 2005.
    [17] Lugovy M, Aman A, Chen Yan, et al. In-situ neutron diffraction of LaCoO3 perovskite under uniaxial compression. II. Elastic properties[J]. Journal of Applied Physics, 2014, 116: 013504. doi: 10.1063/1.4884336
    [18] 李楠, 王曦, 刘昌奎. 中子衍射技术测量残余应力的研究进展[J]. 失效分析与预防, 2021, 16(2):148-154 doi: 10.3969/j.issn.1673-6214.2021.02.013

    Li Nan, Wang Xi, Liu Changkui. Research development of residual stress measured by neutron diffraction[J]. Failure Analysis and Prevention, 2021, 16(2): 148-154 doi: 10.3969/j.issn.1673-6214.2021.02.013
    [19] 奂永慧, 徐平光, 殷匠. 角度分散法中子衍射应力测试技术的应用[J]. 理化检验(物理分册), 2012, 48(4):235-240

    Huan Yonghui, Xu Pingguang, Yin Jiang. Application of angle dispersion neutron diffraction stress testing technology[J]. Physical and Chemical Testing (Physics Volume), 2012, 48(4): 235-240
    [20] Gu F, Nie Q. Introduction to characterization of residual stress by neutron diffraction[J]. Materials Today, 2005, 8: 57.
    [21] 闫亚东, 何俊华. 聚变反应速率测量光学系统设计[J]. 光学 精密工程, 2012, 20(11):2389-2394 doi: 10.3788/OPE.20122011.2389

    Yan Yadong, He Junhua. Design of optical system for fusion reaction-rate measurement[J]. Optics and Precision Engineering, 2012, 20(11): 2389-2394 doi: 10.3788/OPE.20122011.2389
    [22] 温丰, 李明阳, 张小刚, 等. 几种屏蔽材料的中子屏蔽性能实验研究[J]. 实验技术与管理, 2024, 41(3):62-67

    Wen Feng, Li Mingyang, Zhang Xiaogang, et al. Experimental research of the neutron-shielding performance of several shielding materials[J]. Experimental Technology and Management, 2024, 41(3): 62-67
    [23] An Ke, Skorpenske H D, Stoica A D, et al. First in situ lattice strains measurements under load at VULCAN[J]. Metallurgical and Materials Transactions A, 2011, 42(1): 95-99. doi: 10.1007/s11661-010-0495-9
    [24] Preimesberger J I, Kang S Y, Chen Yan, et al. Investigating mechano-electrochemical coupling phenomenon in lithium-ion pouch cells using in-situ neutron diffraction[J]. ECS Transactions, 2021, 104(1): 75-85. doi: 10.1149/10401.0075ecst
    [25] 高建波, 贡志锋, 詹霞, 等. 中子衍射原位表征技术的应用[J]. 中国科技信息, 2019(24):95-96

    Gao Jianbo, Gong Zhifeng, Zhan Xia, et al. Application of neutron diffraction in-situ characterization technology[J]. China Science and Technology Information, 2019(24): 95-96
    [26] Reid A, Marshall M, Kabra S, et al. Application of neutron imaging to detect and quantify fatigue cracking[J]. International Journal of Mechanical Sciences, 2019, 159: 182-194. doi: 10.1016/j.ijmecsci.2019.05.037
    [27] Li Hongjia, Yang Zhaolong, Shen Huahai, et al. On the effect of detwinning during compressive deformation of martensitic NiTi: in situ neutron diffraction and micromechanical modeling[J]. Acta Materialia, 2023, 247: 118737. doi: 10.1016/j.actamat.2023.118737
    [28] Sarawate N N, Dapino M J. Dynamic sensing behavior of ferromagnetic shape memory Ni–Mn–Ga[J]. Smart Materials and Structures, 2009, 18: 104014. doi: 10.1088/0964-1726/18/10/104014
    [29] Bourke M A M, Dunand D C, Ustundag E. SMARTS—a spectrometer for strain measurement in engineering materials[J]. Applied Physics A, 2002, 74(1): s1707-s1709.
    [30] Woodruff T R, Krishnan V B, Clausen B, et al. Design, implementation, and testing of a cryogenic loading capability on an engineering neutron diffractometer[J]. Review of Scientific Instruments, 2010, 81: 063903. doi: 10.1063/1.3436637
    [31] Harjo S, Aizawa K, Kowasaki T, et al. Cryogenic loading devices for materials science & engineering studies at J-PARC[C]//JAEA-Conference 2015-002. 2016: 441-447.
    [32] Naeem M, He Haiyan, Zhang Fan, et al. Cooperative deformation in high-entropy alloys at ultralow temperatures[J]. Science Advances, 2020, 6: eaax4002. doi: 10.1126/sciadv.aax4002
    [33] Yang Jinbo, Li Jian, Liu Wei, et al. Development of a load frame for neutron diffraction and fluorescent thermometry at cryogenic temperature[J]. Review of Scientific Instruments, 2022, 93: 073904. doi: 10.1063/5.0068365
    [34] 郑海彪, 陈洁, 余朝举, 等. 一种应用于中子实验的低温耦合拉伸装置及其测试方法: CN117030438A[P]. 2023-11-10

    Zheng Haibiao, Chen Jie, Yu Chaoju, et al. Low-temperature coupling stretching device applied to neutron experiment and testing method of low-temperature coupling stretching device: CN117030438A[P]. 2023-11-10
    [35] 谢振华, 柯于斌, 杨华, 等. 一种与小角中子散射联用的耦合高低温环境的原位拉伸仪: CN115791428A[P]. 2023-03-14

    Xie Zhenhua, Ke Yubin, Yang Hua, et al. In-situ extensometer combined with small-angle neutron scattering and coupled with high and low temperature environments: CN115791428A[P]. 2023-03-14
    [36] Huang Shenyan, Gao Yanfei, An Ke, et al. Deformation mechanisms in a precipitation-strengthened ferritic superalloy revealed by in situ neutron diffraction studies at elevated temperatures[J]. Acta Materialia, 2015, 83: 137-148. doi: 10.1016/j.actamat.2014.09.053
    [37] 童欣. 极化中子技术[J]. 物理, 2020, 49(11):765-773 doi: 10.7693/wl20201105

    Tong Xin. Polarized neutron techniques[J]. Physics, 2020, 49(11): 765-773 doi: 10.7693/wl20201105
    [38] Ke Y B, Lan S, Wu Y, et al. Unraveling magneto-structural coupling of Ni2MnGa alloy under the application of stress and magnetic field using in situ polarized neutron diffraction[J]. Applied Physics Letters, 2020, 117: 081905. doi: 10.1063/5.0016278
    [39] 柯于斌, 郑海彪, 王循理, 等. 一种用于中子散射的便携式原位多场耦合加载装置: CN108459035A[P]. 2018-08-28

    Ke Yubin, Zheng Haibiao, Wang Xunli, et al. Portable in-situ multi-field coupling loading device for neutron scattering: CN108459035A[P]. 2018-08-28
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  42
  • HTML全文浏览量:  24
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-21
  • 修回日期:  2024-09-06
  • 录用日期:  2024-09-06
  • 网络出版日期:  2024-09-13

目录

    /

    返回文章
    返回