Technology and application of magnetic switches for solid-state high power pulsed generators
-
摘要: 磁开关具有高功率、高重频、高稳定、长寿命等特点,在脉冲功率领域得到了重要应用。首先,介绍了磁开关技术的发展现状。然后,建立了一种磁开关场路协同仿真模型,分析了不同脉冲宽度下磁开关的磁场扩散及饱和动态特性、层间绝缘特性和损耗特性等;研究了磁芯几何结构对磁开关动态特性的影响。最后,阐述了磁开关技术在固态化高功率脉冲驱动源的应用,以及两路脉冲源合成时磁开关的同步技术。Abstract: Because of its high repetition rate and reliability, the solid-state pulsed power generator is an important aspect of pulsed power technology. The solid-state switches play a critical role in this technology, and among them the magnetic switch stands out due to its long lifespan, high power capacity and free of maintenance. This manuscript delves into the key technologies and typical applications of magnetic switches. Furthermore, the manuscript analyzes the working characteristics of magnetic cores, by utilizing a field-circuit co-simulation model of magnetic switches. The model includes processes like magnetic core saturation, interlamination electric field strength, and energy loss across various time scales. Additionally, the manuscript explores the influence of magnetic core geometry. Finally, it presents applications utilizing magnetic switch technology, such as compact solid-state high-power pulse generators and magnetic synchronization technology.
-
图 13 三种结构磁开关电压波形以及负载电压波形(tsat_in_S1、tsat_out_S1分别为结构一磁芯最内侧与最外侧磁性带材的饱和时刻,其余依次类比)
Figure 13. Voltage on the magnetic switch and the circuit on the load under three structure (tsat_in_S1 and tsat_out_S1 are the saturation time of the innermost and the outermost lamination, respectively. The other can be seen in a same way.)
表 1 三种结构磁芯的动态特性参数
Table 1. Dynamic characteristics parameters of magnetic core under three geometric structure
tsat_in/ns tsat_out/ns tsat/ns EET/J Emax/(kV·cm−1) structure 1 393.2 449.0 55.8 0.93 5.35 structure 2 396.0 438.6 42.6 0.58 5.64 structure 3 408.8 444.6 35.8 0.74 10.33 -
[1] 江伟华. 高重复频率脉冲功率技术及其应用: (3)磁开关的作用[J]. 强激光与粒子束, 2012, 24(6):1269-1275 doi: 10.3788/HPLPB20122406.1269Jiang Weihua. Repetition rate pulsed power technology and its applications: (III) The role of magnetic switches[J]. High Power Laser and Particle Beams, 2012, 24(6): 1269-1275 doi: 10.3788/HPLPB20122406.1269 [2] Yuan Qi, Deng Zichen, Ding Weidong, et al. New advances in solid-state pulse generator based on magnetic switches[J]. Review of Scientific Instruments, 2022, 93: 051501. doi: 10.1063/5.0079583 [3] 曾正中. 实用脉冲功率技术引论[M]. 西安: 陕西科学技术出版社, 2003Zeng Zhengzhong. Introduction to practical pulse power technology[M]. Xi’an: Shaanxi Science and Technology Press, 2003 [4] Bluhm H. Pulsed power systems: principles and applications[M]. Berlin, Heidelberg: Springer, 2006. [5] Nunnally W C. Magnetic switches and circuits[R]. Los Alamos: Los Alamos National Laboratory, 1982. [6] Melville W S. The use of saturable reactors as discharge devices for pulse generators[J]. Proceedings of the IEE - Part III: Radio and Communication Engineering, 1951, 98(53): 185-206. doi: 10.1049/pi-3.1951.0038 [7] Mesyats G A, Korovin S D, Gunin A V, et al. Repetitively pulsed high-current accelerators with transformer charging of forming lines[J]. Laser and Particle Beams, 2003, 21(2): 197-209. doi: 10.1017/S0263034603212076 [8] Hester R E, Bubp D G, Clark J C, et al. The experimental test accelerator (ETA)[J]. IEEE Transactions on Nuclear Science, 1979, 26(3): 4180-4182. doi: 10.1109/TNS.1979.4330736 [9] Harjes H C, Reed K W, Buttram M T, et al. The repetitive high energy pulsed power module[C]//Nineteenth IEEE Symposium on Power Modulators. 1990: 168-173. [10] Kotov Y A, Mesyats G B, Rukin S N, et al. A novel nanosecond semiconductor opening switch for megavolt repetitive pulsed power technology: experiment and applications[C]//Ninth IEEE International Pulsed Power Conference. 1993: 134-139. [11] 米彦, 万佳仑, 卞昌浩, 等. 基于磁脉冲压缩的DBD高频双极性纳秒脉冲发生器的设计及其放电特性[J]. 电工技术学报, 2017, 32(24):244-256Mi Yan, Wan Jialun, Bian Changhao, et al. Design of DBD high-frequency bipolar nanosecond pulse generator based on magnetic pulse compression system and its discharging characteristics[J]. Transactions of China Electrotechnical Society, 2017, 32(24): 244-256 [12] 张东东, 周媛, 李文峰, 等. 全固态高重复频率磁脉冲压缩发生器[J]. 强激光与粒子束, 2012, 24(4):889-892 doi: 10.3788/HPLPB20122404.0889Zhang Dongdong, Zhou Yuan, Li Wenfeng, et al. All-solid-state high-repetition-rate magnetic pulse compression generator[J]. High Power Laser and Particle Beams, 2012, 24(4): 889-892 doi: 10.3788/HPLPB20122404.0889 [13] 李嵩. 高功率磁脉冲压缩系统及其在长脉冲驱动源中的应用研究[D]. 长沙: 国防科学技术大学, 2015Li Song. High-power magnetic pulse compressor and its application in the long pulse generators[D]. Changsha: National University of Defense Technology, 2015 [14] Gao Jingming, Li Song, Qian Baoliang, et al. Development of a GW-level solid-state long pulse generator[J]. IEEE Transactions on Plasma Science, 2019, 47(10): 4512-4517. doi: 10.1109/TPS.2019.2927609 [15] 高景明, 李嵩, 金尚东, 等. 一种固态化瞬态强场测试平台研制[J]. 强激光与粒子束, 2022, 34:075008 doi: 10.11884/HPLPB202234.210484Gao Jingming, Li Song, Jin Shangdong, et al. Development of solid-state platform for transient intense field test[J]. High Power Laser and Particle Beams, 2022, 34: 075008 doi: 10.11884/HPLPB202234.210484 [16] Degnon M R, Gusev A I, De Ferron A S, et al. A saturable pulse transformer based on nanocrystalline magnetic cores for an adjustable nanosecond high-voltage generator[J]. IEEE Transactions on Plasma Science, 2023, 51(10): 2849-2857. doi: 10.1109/TPS.2023.3284657 [17] 王坤, 徐鸿飞, 王鑫, 等. 基于可饱和脉冲变压器谐振充电的快脉冲功率源研究[J]. 中国电机工程学报, 2023, 43(19):7704-7712Wang Kun, Xu Hongfei, Wang Xin, et al. Research on the Fast-pulsed power generator based on resonant charging mode of saturable pulse transformer[J]. Proceedings of the CSEE, 2023, 43(19): 7704-7712 [18] Zhang Yu, Liu Jinliang. A new kind of low-inductance transformer type magnetic switch (TTMS) with coaxial cylindrical conductors[J]. Review of Scientific Instruments, 2013, 84: 023306. doi: 10.1063/1.4791926 [19] Zhang Yu, Liu Jinliang. Physical suppression effects of the reversed magnetic coupling on the saturation inductance of saturable pulse transformer[J]. Applied Physics Letters, 2013, 102: 253502. doi: 10.1063/1.4812333 [20] Chen Rong, Yang Jianhua, Cheng Xinbing, et al. Research of a fractional-turn ratio saturable pulse transformer and its application in a microsecond-range pulse modulator[J]. Plasma Science and Technology, 2017, 19: 064014. doi: 10.1088/2058-6272/aa6155 [21] 张东东, 严萍, 王珏. 磁脉冲压缩系统的仿真研究[J]. 强激光与粒子束, 2008, 20(3):497-500Zhang Dongdong, Yan Ping, Wang Jue. Simulation on a magnetic pulse compression system[J]. High Power Laser and Particle Beams, 2008, 20(3): 497-500 [22] Takach M D, Lauritzen P O. Survey of magnetic core models[C]//Proceedings of 1995 IEEE Applied Power Electronics Conference and Exposition. 1995: 560-566. [23] García-Gil R, Espí J M, Jordán J, et al. Parameterizing non-linear magnetic cores for PSpice Simulation[M]//Méndez-Vilas A. Recent Advances in Multidisciplinary Applied Physics. Amsterdam: Elsevier, 2005: 191-195. [24] Ngo K D T. Subcircuit modeling of magnetic cores with hysteresis in PSpice[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(4): 1425-1434. doi: 10.1109/TAES.2002.1145768 [25] 江进波, 程廷强, 黄国良, 等. 铁基纳米晶磁芯的脉冲磁化特性测量及其在磁开关中的应用[J]. 强激光与粒子束, 2023, 35:055004 doi: 10.11884/HPLPB202335.220304Jiang Jinbo, Cheng Tingqiang, Huang Guoliang, et al. Pulse magnetic properties measurement of Fe-based nanocrystalline cores and its application in magnetic switches[J]. High Power Laser and Particle Beams, 2023, 35: 055004 doi: 10.11884/HPLPB202335.220304 [26] 时承瑜. 高功率磁开关同步运行技术研究[D]. 长沙: 国防科技大学, 2019Shi Chengyu. Study on the synchronization of high power magnetic switches[D]. Changsha: National University of Defense Technology, 2019 [27] Zhang Hanwen, Chen Rong, Sun Yijie, et al. Dynamic characteristics of a coaxial magnetic switch modulating pulse forming networks[J]. Review of Scientific Instruments, 2024, 95: 054707. doi: 10.1063/5.0196191 [28] Gao Jingming, Jin Shangdong, Li Song, et al. Development of a self-coupling high-voltage square waveform pulse transformer[J]. IEEE Transactions on Plasma Science, 2023, 51(10): 2835-2840. doi: 10.1109/TPS.2023.3304997 [29] 阳福香. Ku波段内馈入式过模同轴相对论速调管放大器研究[D]. 长沙: 国防科技大学, 2022Yang Fuxiang. Investigation of a Ku-band overmoded coaxial relativistic klystron amplifier[D]. Changsha: National University of Defense Technology, 2022 [30] 时承瑜, 杨汉武, 高景明. 两路磁开关同步运行技术[J]. 太赫兹科学与电子信息学报, 2021, 19(1):170-175 doi: 10.11805/TKYDA2019299Shi Chengyu, Yang Hanwu, Gao Jingming. Synchronization of magnetic switches[J]. Journal of Terahertz Science and Electronic Information Technology, 2021, 19(1): 170-175 doi: 10.11805/TKYDA2019299