留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁开关技术及其在高功率脉冲驱动源中的应用

高景明 张瀚文 李嵩 杨希彪 孙艺杰 李典耕 陈绒 任小晶 杨汉武 钱宝良

高景明, 张瀚文, 李嵩, 等. 磁开关技术及其在高功率脉冲驱动源中的应用[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240213
引用本文: 高景明, 张瀚文, 李嵩, 等. 磁开关技术及其在高功率脉冲驱动源中的应用[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240213
Gao Jingming, Zhang Hanwen, Li Song, et al. Technology and application of magnetic switches for solid-state high power pulsed generators[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240213
Citation: Gao Jingming, Zhang Hanwen, Li Song, et al. Technology and application of magnetic switches for solid-state high power pulsed generators[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240213

磁开关技术及其在高功率脉冲驱动源中的应用

doi: 10.11884/HPLPB202436.240213
基金项目: 国家高技术发展计划项目
详细信息
    作者简介:

    高景明,megod818@163.com

    通讯作者:

    杨汉武,yanghw@nudt.edu.cn

  • 中图分类号: TN78

Technology and application of magnetic switches for solid-state high power pulsed generators

  • 摘要: 磁开关具有高功率、高重频、高稳定、长寿命等特点,在脉冲功率领域得到了重要应用。首先,介绍了磁开关技术的发展现状。然后,建立了一种磁开关场路协同仿真模型,分析了不同脉冲宽度下磁开关的磁场扩散及饱和动态特性、层间绝缘特性和损耗特性等;研究了磁芯几何结构对磁开关动态特性的影响。最后,阐述了磁开关技术在固态化高功率脉冲驱动源的应用,以及两路脉冲源合成时磁开关的同步技术。
  • 图  1  磁滞回线模型

    Figure  1.  Hysteresis loop model

    图  2  串联磁压缩网络原理图及典型输出的电压、功率波形

    Figure  2.  The schematic and the typical output waveform of the magnetic compression network under serial connection

    图  3  并联磁压缩网络原理图及典型输出的电压、功率波形

    Figure  3.  Schematic and the typical output waveform of the magnetic compression network under parallel connection

    图  4  磁压缩电路实物图

    Figure  4.  Picture of MCU

    图  5  固态化瞬态强场测试平台的电路示意图

    Figure  5.  Schematic of the solid-state transient intense field test platform

    图  6  可饱和变压器模型

    Figure  6.  Model of saturable pulse transformer

    图  7  次级电容充电波形

    Figure  7.  Voltage and the current waveform on the capacitor

    图  8  磁开关模型及μs时间尺度的结果验证

    Figure  8.  Model and verified experimental results of the magnetic switch

    图  9  磁场在磁芯带材中的扩散过程

    Figure  9.  Saturation process of the lamination in the magnetic core

    图  10  磁芯工作周期中的能量损耗

    Figure  10.  Energy consumption in a working circle of the magnetic core

    图  11  磁开关径向与纵向电场强度分布按照百纳秒级脉冲下的归一化结果

    Figure  11.  Radial and longitudinal interlamination electric field distribution in the magnetic core

    图  12  脉冲形成网络放电回路的电路原理图及结果

    Figure  12.  Model and results of the magnetic switch circuit modulating pulse forming networks

    图  13  三种结构磁开关电压波形以及负载电压波形(tsat_in_S1tsat_out_S1分别为结构一磁芯最内侧与最外侧磁性带材的饱和时刻,其余依次类比)

    Figure  13.  Voltage on the magnetic switch and the circuit on the load under three structure (tsat_in_S1 and tsat_out_S1 are the saturation time of the innermost and the outermost lamination, respectively. The other can be seen in a same way.)

    图  14  基于磁开关的固态化高功率脉冲驱动源

    Figure  14.  Solid-state high-power pulse generator based on magnetic switches

    图  15  驱动高功率微波源的典型应用

    Figure  15.  Typical application for HPM driver

    图  16  双路磁开关同步运行电路示意及电磁耦合模拟结果

    Figure  16.  Circuit and simulation results with electromagnetic coupling of synchronization with two magnetic switches

    图  17  两路磁开关回路参数存在差异时的电磁耦合实验结果

    Figure  17.  Experimental results of synchronization with two magnetic switches under different circuit parameters

    表  1  三种结构磁芯的动态特性参数

    Table  1.   Dynamic characteristics parameters of magnetic core under three geometric structure

    tsat_in/ns tsat_out/ns tsat/ns EET/J Emax/(kV·cm−1)
    structure 1 393.2 449.0 55.8 0.93 5.35
    structure 2 396.0 438.6 42.6 0.58 5.64
    structure 3 408.8 444.6 35.8 0.74 10.33
    下载: 导出CSV
  • [1] 江伟华. 高重复频率脉冲功率技术及其应用: (3)磁开关的作用[J]. 强激光与粒子束, 2012, 24(6):1269-1275 doi: 10.3788/HPLPB20122406.1269

    Jiang Weihua. Repetition rate pulsed power technology and its applications: (III) The role of magnetic switches[J]. High Power Laser and Particle Beams, 2012, 24(6): 1269-1275 doi: 10.3788/HPLPB20122406.1269
    [2] Yuan Qi, Deng Zichen, Ding Weidong, et al. New advances in solid-state pulse generator based on magnetic switches[J]. Review of Scientific Instruments, 2022, 93: 051501. doi: 10.1063/5.0079583
    [3] 曾正中. 实用脉冲功率技术引论[M]. 西安: 陕西科学技术出版社, 2003

    Zeng Zhengzhong. Introduction to practical pulse power technology[M]. Xi’an: Shaanxi Science and Technology Press, 2003
    [4] Bluhm H. Pulsed power systems: principles and applications[M]. Berlin, Heidelberg: Springer, 2006.
    [5] Nunnally W C. Magnetic switches and circuits[R]. Los Alamos: Los Alamos National Laboratory, 1982.
    [6] Melville W S. The use of saturable reactors as discharge devices for pulse generators[J]. Proceedings of the IEE - Part III: Radio and Communication Engineering, 1951, 98(53): 185-206. doi: 10.1049/pi-3.1951.0038
    [7] Mesyats G A, Korovin S D, Gunin A V, et al. Repetitively pulsed high-current accelerators with transformer charging of forming lines[J]. Laser and Particle Beams, 2003, 21(2): 197-209. doi: 10.1017/S0263034603212076
    [8] Hester R E, Bubp D G, Clark J C, et al. The experimental test accelerator (ETA)[J]. IEEE Transactions on Nuclear Science, 1979, 26(3): 4180-4182. doi: 10.1109/TNS.1979.4330736
    [9] Harjes H C, Reed K W, Buttram M T, et al. The repetitive high energy pulsed power module[C]//Nineteenth IEEE Symposium on Power Modulators. 1990: 168-173.
    [10] Kotov Y A, Mesyats G B, Rukin S N, et al. A novel nanosecond semiconductor opening switch for megavolt repetitive pulsed power technology: experiment and applications[C]//Ninth IEEE International Pulsed Power Conference. 1993: 134-139.
    [11] 米彦, 万佳仑, 卞昌浩, 等. 基于磁脉冲压缩的DBD高频双极性纳秒脉冲发生器的设计及其放电特性[J]. 电工技术学报, 2017, 32(24):244-256

    Mi Yan, Wan Jialun, Bian Changhao, et al. Design of DBD high-frequency bipolar nanosecond pulse generator based on magnetic pulse compression system and its discharging characteristics[J]. Transactions of China Electrotechnical Society, 2017, 32(24): 244-256
    [12] 张东东, 周媛, 李文峰, 等. 全固态高重复频率磁脉冲压缩发生器[J]. 强激光与粒子束, 2012, 24(4):889-892 doi: 10.3788/HPLPB20122404.0889

    Zhang Dongdong, Zhou Yuan, Li Wenfeng, et al. All-solid-state high-repetition-rate magnetic pulse compression generator[J]. High Power Laser and Particle Beams, 2012, 24(4): 889-892 doi: 10.3788/HPLPB20122404.0889
    [13] 李嵩. 高功率磁脉冲压缩系统及其在长脉冲驱动源中的应用研究[D]. 长沙: 国防科学技术大学, 2015

    Li Song. High-power magnetic pulse compressor and its application in the long pulse generators[D]. Changsha: National University of Defense Technology, 2015
    [14] Gao Jingming, Li Song, Qian Baoliang, et al. Development of a GW-level solid-state long pulse generator[J]. IEEE Transactions on Plasma Science, 2019, 47(10): 4512-4517. doi: 10.1109/TPS.2019.2927609
    [15] 高景明, 李嵩, 金尚东, 等. 一种固态化瞬态强场测试平台研制[J]. 强激光与粒子束, 2022, 34:075008 doi: 10.11884/HPLPB202234.210484

    Gao Jingming, Li Song, Jin Shangdong, et al. Development of solid-state platform for transient intense field test[J]. High Power Laser and Particle Beams, 2022, 34: 075008 doi: 10.11884/HPLPB202234.210484
    [16] Degnon M R, Gusev A I, De Ferron A S, et al. A saturable pulse transformer based on nanocrystalline magnetic cores for an adjustable nanosecond high-voltage generator[J]. IEEE Transactions on Plasma Science, 2023, 51(10): 2849-2857. doi: 10.1109/TPS.2023.3284657
    [17] 王坤, 徐鸿飞, 王鑫, 等. 基于可饱和脉冲变压器谐振充电的快脉冲功率源研究[J]. 中国电机工程学报, 2023, 43(19):7704-7712

    Wang Kun, Xu Hongfei, Wang Xin, et al. Research on the Fast-pulsed power generator based on resonant charging mode of saturable pulse transformer[J]. Proceedings of the CSEE, 2023, 43(19): 7704-7712
    [18] Zhang Yu, Liu Jinliang. A new kind of low-inductance transformer type magnetic switch (TTMS) with coaxial cylindrical conductors[J]. Review of Scientific Instruments, 2013, 84: 023306. doi: 10.1063/1.4791926
    [19] Zhang Yu, Liu Jinliang. Physical suppression effects of the reversed magnetic coupling on the saturation inductance of saturable pulse transformer[J]. Applied Physics Letters, 2013, 102: 253502. doi: 10.1063/1.4812333
    [20] Chen Rong, Yang Jianhua, Cheng Xinbing, et al. Research of a fractional-turn ratio saturable pulse transformer and its application in a microsecond-range pulse modulator[J]. Plasma Science and Technology, 2017, 19: 064014. doi: 10.1088/2058-6272/aa6155
    [21] 张东东, 严萍, 王珏. 磁脉冲压缩系统的仿真研究[J]. 强激光与粒子束, 2008, 20(3):497-500

    Zhang Dongdong, Yan Ping, Wang Jue. Simulation on a magnetic pulse compression system[J]. High Power Laser and Particle Beams, 2008, 20(3): 497-500
    [22] Takach M D, Lauritzen P O. Survey of magnetic core models[C]//Proceedings of 1995 IEEE Applied Power Electronics Conference and Exposition. 1995: 560-566.
    [23] García-Gil R, Espí J M, Jordán J, et al. Parameterizing non-linear magnetic cores for PSpice Simulation[M]//Méndez-Vilas A. Recent Advances in Multidisciplinary Applied Physics. Amsterdam: Elsevier, 2005: 191-195.
    [24] Ngo K D T. Subcircuit modeling of magnetic cores with hysteresis in PSpice[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(4): 1425-1434. doi: 10.1109/TAES.2002.1145768
    [25] 江进波, 程廷强, 黄国良, 等. 铁基纳米晶磁芯的脉冲磁化特性测量及其在磁开关中的应用[J]. 强激光与粒子束, 2023, 35:055004 doi: 10.11884/HPLPB202335.220304

    Jiang Jinbo, Cheng Tingqiang, Huang Guoliang, et al. Pulse magnetic properties measurement of Fe-based nanocrystalline cores and its application in magnetic switches[J]. High Power Laser and Particle Beams, 2023, 35: 055004 doi: 10.11884/HPLPB202335.220304
    [26] 时承瑜. 高功率磁开关同步运行技术研究[D]. 长沙: 国防科技大学, 2019

    Shi Chengyu. Study on the synchronization of high power magnetic switches[D]. Changsha: National University of Defense Technology, 2019
    [27] Zhang Hanwen, Chen Rong, Sun Yijie, et al. Dynamic characteristics of a coaxial magnetic switch modulating pulse forming networks[J]. Review of Scientific Instruments, 2024, 95: 054707. doi: 10.1063/5.0196191
    [28] Gao Jingming, Jin Shangdong, Li Song, et al. Development of a self-coupling high-voltage square waveform pulse transformer[J]. IEEE Transactions on Plasma Science, 2023, 51(10): 2835-2840. doi: 10.1109/TPS.2023.3304997
    [29] 阳福香. Ku波段内馈入式过模同轴相对论速调管放大器研究[D]. 长沙: 国防科技大学, 2022

    Yang Fuxiang. Investigation of a Ku-band overmoded coaxial relativistic klystron amplifier[D]. Changsha: National University of Defense Technology, 2022
    [30] 时承瑜, 杨汉武, 高景明. 两路磁开关同步运行技术[J]. 太赫兹科学与电子信息学报, 2021, 19(1):170-175 doi: 10.11805/TKYDA2019299

    Shi Chengyu, Yang Hanwu, Gao Jingming. Synchronization of magnetic switches[J]. Journal of Terahertz Science and Electronic Information Technology, 2021, 19(1): 170-175 doi: 10.11805/TKYDA2019299
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  54
  • HTML全文浏览量:  29
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-26
  • 修回日期:  2024-09-12
  • 录用日期:  2024-09-05
  • 网络出版日期:  2024-09-21

目录

    /

    返回文章
    返回