留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于闪光图像消噪的改进BM3D方法

危才华 唐志鹏 景越峰 管永红 刘进

危才华, 唐志鹏, 景越峰, 等. 用于闪光图像消噪的改进BM3D方法[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240217
引用本文: 危才华, 唐志鹏, 景越峰, 等. 用于闪光图像消噪的改进BM3D方法[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240217
Wei Caihua, Tang Zhipeng, Jing Yuefeng, et al. Improved BM3D method for flash X-ray radiographs denoising[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240217
Citation: Wei Caihua, Tang Zhipeng, Jing Yuefeng, et al. Improved BM3D method for flash X-ray radiographs denoising[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240217

用于闪光图像消噪的改进BM3D方法

doi: 10.11884/HPLPB202436.240217
基金项目: 冲击波物理与爆轰波物理重点实验室基金项目(JCKY202212005)
详细信息
    作者简介:

    危才华,wch01592@qq.com

  • 中图分类号: TN919

Improved BM3D method for flash X-ray radiographs denoising

  • 摘要: 高斯噪声是闪光图像中的主要噪声,将在密度反演等后续处理中被放大,严重影响密度重建及客体边界提取结果,因此消高斯噪声是闪光图像消噪研究的重点内容。针对闪光照相图像噪声及照相客体轴旋转对称的特点,研究了基于BM3D(Block Matching 3D,BM3D)的闪光照相图像消噪算法,针对闪光照相图像中难以获得更高质量相似块的缺陷,在不破坏噪声独立性的情况下,通过对含噪退化图像进行旋转与镜像操作,增加了提供相似块的图像来源。同时,通过引入图像块的灰度变换,降低了原有相似性要求中的灰度值要求,提高了形状相似的要求,增加了获得高质量相似块的能力。图像的消噪结果表明,由于相似块的质量得到保证,用于闪光图像消噪的改进BM3D方法取得了更好的消噪效果。
  • 图  1  FTO客体图像及其光程投影图

    Figure  1.  Object Image of FTO and the projection image of light distance

    图  2  本文消噪方法第一步的相似块选取示例

    Figure  2.  Example of similar block selection in the first step of denoising method in this paper

    图  3  本文消噪方法第二步的相似块选取示例

    Figure  3.  Example of similar block selection in the second step of denoising method in this paper

    图  4  本文消噪方法第二步中的相似块与参考块灰度比较

    Figure  4.  Gray scale comparison between similar block and reference block in the second step of denoising method in this paper

    图  5  FTO仿真图像消噪结果

    Figure  5.  Denoising results of FTO simulation image

    图  6  过中心的水平剖线对比情况

    Figure  6.  Comparison of horizontal cross-sections over the center

    图  7  实验图像消噪结果

    Figure  7.  Denoising results of experimental image

    图  8  消噪结果局部细节

    Figure  8.  Local details of denoising results

    表  1  FTO仿真图像消噪方法评价结果

    Table  1.   Evaluation results of denoising methods for FTO simulation image

    filtering methods MSE/10−3 SNR PSNR
    mean filtering 84.86 37.99 39.43
    Gaussian filtering 83.74 38.49 39.56
    P-M anisotropic diffusion filtering 81.42 39.59 39.75
    nonlocal mean filtering 85.98 37.49 39.21
    BM3D 63.71 50.60 41.88
    method in this paper 55.66 57.91 43.03
    下载: 导出CSV
  • [1] Aufderheide III M B, Martz H E Jr, Slone D M, et al. Concluding report: quantitative tomography simulations and reconstruction algorithms[R]. UCRL-ID-146938, 2002: 1-19.
    [2] Clark D A, Espinoza C J. Proton radiography[R]. Physics Division Progress Report, 1999-2000: 156-168.
    [3] 危才华, 景越峰, 张小琳, 等. 基于极大似然模型和期望最大化算法的闪光图像重建[J]. 强激光与粒子束, 2016, 28:054003 doi: 10.11884/HPLPB201628.054003

    Wei Caihua, Jing Yuefeng, Zhang Xiaolin, et al. Image reconstruction algorithm based on maximum likelihood-expectation maximum for radiography[J]. High Power Laser and Particle Beams, 2016, 28: 054003 doi: 10.11884/HPLPB201628.054003
    [4] 景越峰, 管永红, 刘军. 基于改进开关中值滤波的多孔网栅图像脉冲噪声消除[J]. 强激光与粒子束, 2015, 27:084006 doi: 10.11884/HPLPB201527.084006

    Jing Yuefeng, Guan Yonghong, Liu Jun. Removal of impulse noise of anti-scatter grided images with modified switching median filters[J]. High Power Laser and Particle Beams, 2015, 27: 084006 doi: 10.11884/HPLPB201527.084006
    [5] Meng Yizhen, Zhang Jun. A novel gray image denoising method using convolutional neural network[J]. IEEE Access, 2022, 10: 49657-49676. doi: 10.1109/ACCESS.2022.3169131
    [6] Holla K S, Park N, Lee B. EFID: edge-focused image denoising using a convolutional neural network[J]. IEEE Access, 2023, 11: 9613-9626. doi: 10.1109/ACCESS.2023.3239835
    [7] 谷学静, 杨宝上, 刘秋月. 基于高斯滤波和AKAZE-LATCH的图像匹配算法[J]. 半导体光电, 2023, 44(4):639-644

    Gu Xuejing, Yang Baoshang, Liu Qiuyue. Image matching algorithm based on Gaussian filtering and AKAZE-LATCH[J]. Semiconductor Optoelectronics, 2023, 44(4): 639-644
    [8] 李文娟, 陈军, 张永刚, 等. 基于改进加权均值滤波的医学影像图像除噪研究[J]. 辽宁大学学报(自然科学版), 2022, 49(1):30-35

    Li Wenjuan, Chen Jun, Zhang Yonggang, et al. Research of medical image denoising based on improved weighted mean filtering[J]. Journal of Liaoning University (Natural Sciences Edition), 2022, 49(1): 30-35
    [9] 肖丹, 黄玉清. 改进的各向异性扩散图像去噪算法[J]. 自动化仪表, 2017, 38(7):1-3

    Xiao Dan, Huang Yuqing. Improved anisotropic diffusion image denoising algorithm[J]. Process Automation Instrumentation, 2017, 38(7): 1-3
    [10] Buades A, Coll B, Morel J M. A review of image denoising algorithms, with a new one[J]. Multiscale Modeling & Simulation, 2005, 4(2): 490-530.
    [11] Dabov K, Foi A, Katkovnik V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095. doi: 10.1109/TIP.2007.901238
    [12] 俞汪涛, 许鹏, 鲍杰, 等. 基于BM3D算法的快中子图像降噪方法[J]. 核电子学与探测技术, 2023, 43(2):369-375 doi: 10.3969/j.issn.0258-0934.2023.02.025

    Yu Wangtao, Xu Peng, Bao Jie, et al. Fast neutron image denoising method based on BM3D algorithm[J]. Nuclear Electronics & Detection Technology, 2023, 43(2): 369-375 doi: 10.3969/j.issn.0258-0934.2023.02.025
    [13] 唐艳, 潘伟, 张利, 等. 基于BM3D去噪算法在天文图像中的应用[J]. 智能计算机与应用, 2022, 12(9):193-197 doi: 10.3969/j.issn.2095-2163.2022.09.035

    Tang Yan, Pan Wei, Zhang Li, et al. Application of BM3D denoising algorithm in astronomical images[J]. Intelligent Computer and Applications, 2022, 12(9): 193-197 doi: 10.3969/j.issn.2095-2163.2022.09.035
    [14] 张小琳, 景越峰, 刘军. 基于Facet模型的闪光图像边缘检测[J]. 强激光与粒子束, 2010, 22(7):1640-1644 doi: 10.3788/HPLPB20102207.1640

    Zhang Xiaolin, Jing Yuefeng, Liu Jun. Edge detection method based on Facet model for flash X-ray radiographs[J]. High Power Laser and Particle Beams, 2010, 22(7): 1640-1644 doi: 10.3788/HPLPB20102207.1640
    [15] Huynh-Thu Q, Ghanbari M. Scope of validity of PSNR in image/Video quality assessment[J]. Electronics Letters, 2008, 44(13): 800-801. doi: 10.1049/el:20080522
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  17
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-30
  • 修回日期:  2024-09-15
  • 录用日期:  2024-09-15
  • 网络出版日期:  2024-09-24

目录

    /

    返回文章
    返回