留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于高功率微波系统的全介质透镜阵列天线

张峰 卢佩 赵加宁 杨若洋 陈俊达

张峰, 卢佩, 赵加宁, 等. 用于高功率微波系统的全介质透镜阵列天线[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240246
引用本文: 张峰, 卢佩, 赵加宁, 等. 用于高功率微波系统的全介质透镜阵列天线[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240246
Zhang Feng, Lu Pei, Zhao Jianing, et al. All-dielectric lens array antenna for high-power microwave applications[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240246
Citation: Zhang Feng, Lu Pei, Zhao Jianing, et al. All-dielectric lens array antenna for high-power microwave applications[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240246

用于高功率微波系统的全介质透镜阵列天线

doi: 10.11884/HPLPB202436.240246
基金项目: 国家自然科学基金青年基金项目(62101149)
详细信息
    作者简介:

    张 峰,835812050@qq.com

    通讯作者:

    赵加宁,zjn317253663@126.com

  • 中图分类号: TN822.4

All-dielectric lens array antenna for high-power microwave applications

  • 摘要: 为了实现透镜阵列天线所需的移相范围,设计了两种不同的单元结构,通过优化参数,在保证良好的传输幅值的基础上实现相移范围的互补。为了探索在高功率微波系统应用,对两种单元的功率容量也开展了详细研究。在无限周期情况下,随着单元尺寸变化,单元功率容量范围为1.08~19.37 MW;通过研制口径为315 mm×315 mm的透镜天线来构建有限周期条件,并仿真计算得到该天线最大功率容量为226.553 MW,功率密度可以达到2283.23 W/mm2,并且该天线在中心频点10 GHz处峰值增益可达到29.37 dBi,口径效率为62.43%,副瓣电平约为-21.54 dBi。结果表明所提出单元的有效性与正确性,也说明设计的透镜阵列天线不仅具有良好的辐射特性,同时具有MW量级的功率容量。
  • 图  1  单元1

    Figure  1.  Unit 1

    图  2  单元2

    Figure  2.  Unit 2

    图  3  两个单元的相移曲线与幅值

    Figure  3.  Amplitude and phase of the proposed units

    图  4  电磁波入射角度示意图

    Figure  4.  Electromagnetic wave incident angle diagram

    图  5  不同入射角度下两个单元的幅值和相位变化特性

    Figure  5.  Amplitude and phase shift characteristics of proposed units at different incident angles

    图  6  单元表面最大场强和功率容量

    Figure  6.  Maximum field strength and Power capacity of the proposed units

    图  7  全介质透镜阵列天线模型示意图

    Figure  7.  Model of all-dielectric transmission array antenna

    图  8  阵面的相位分布以及各单元尺寸分布图

    Figure  8.  Phase and size distribution of the designed transmission array

    图  9  透镜阵列E面和H面的辐射方向图

    Figure  9.  Radiation pattern of E and H planes of the designed transmission array

    图  10  增益随频率变化

    Figure  10.  Gain variation with frequency

    图  11  全介质透镜阵列天线的最大表面场强

    Figure  11.  Maximum surface field strength

    表  1  阵列天线性能对比

    Table  1.   Performance comparison of array antennas

    referencetypegain/dBiarea/(mm×mm)aperture efficiency/%Ed/(MV/m)Pc/MWband width/%
    [7]leaky waveguide26.2800×53.0876.23.38200
    [8]all-metal32.8500×50054.59502679.08
    [11]all-metal23.7189×18950.63/800.5/35824.2(1-dBi)
    [12]dielectric- metal27.5880×8052.33313.9926.4(3-dBi)
    [20]all-metal21.8160×320712
    this workall-dielectric29.37315×31562.437226.651(3-dBi)
    下载: 导出CSV
  • [1] Benford J, Swegle J A, Schamiloglu E. High power microwaves[M]. 2nd ed. New York: Taylor & Francis, 2007: 66-70.
    [2] Gold S G, Nusinovich G S. Review of high-power microwave source research[J]. Review of Scientific Instruments, 1997, 68(11): 3945-3974. doi: 10.1063/1.1148382
    [3] Zhang Jun, Jin Zhenxing, Yang Jianhua, et al. Recent advance in long-pulse HPM sources with repetitive operation in S-, C-, and X-Bands[J]. IEEE Transactions on Plasma Science, 2011, 39(6): 1438-1445. doi: 10.1109/TPS.2011.2129536
    [4] 许亮, 袁成卫, 张强. 紧凑型宽带高功率微波悬板阵列天线研究[C]//2019年全国天线年会论文集(上册). 2019: 449-451

    Xu Liang, Yuan Chengwei, Zhang Qiang. Research on compact broadband high-power microwave suspended plate array antenna[C]//Proceedings of the 2019 National Antenna Conference (Volume I). 2019: 449-451
    [5] Vlasov S N, Orlova I M. Quasioptical transformer which transforms the waves in a waveguide having a circular cross section into a highly directional wave beam[J]. Radiophysics and Quantum Electronics, 1974, 17(1): 115-119. doi: 10.1007/BF01037072
    [6] Courtney C C, Baum C E. The coaxial beam-rotating antenna (COBRA): Theory of operation and measured performance[J]. IEEE Transactions on Antennas and Propagation, 2000, 48(2): 299-309. doi: 10.1109/8.833080
    [7] 李佳伟, 黄文华, 梁铁柱, 等. 基于漏波波导的X波段高功率微波天线[J]. 强激光与粒子束, 2011, 23(8):2125-2129 doi: 10.3788/HPLPB20112308.2125

    Li Jiawei, Huang Wenhua, Liang Tiezhu, et al. Design and simulation of X-band HPM antenna based on leaky waveguide[J]. High Power Laser and Particle Beams, 2011, 23(8): 2125-2129 doi: 10.3788/HPLPB20112308.2125
    [8] 赵旭浩, 毕绍锋, 张建德, 等. 伸缩式全金属反射阵列扫描天线[J]. 强激光与粒子束, 2022, 34:043004

    Zhao Xuhao, Bi Shaofeng, Zhang Jiande, et al. Scalable all-metal reflective array beam scanning antenna[J]. High Power Laser and Particle Beams, 2022, 34: 043004
    [9] Sun Yunfei, Dang Fangchao, Yuan Chengwei, et al. A beam-steerable lens antenna for Ku-band high-power microwave applications[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(11): 7580-7583. doi: 10.1109/TAP.2020.2979282
    [10] Zhao Xuelong, Yuan Chengwei, Liu Lie, et al. All-metal beam steering lens antenna for high power microwave applications[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 7340-7344.
    [11] Kong Gexing, Li Xiangqiang, Wang Qingfeng, et al. A wideband reconfigurable dual-branch helical reflectarray antenna for high-power microwave applications[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(2): 825-833. doi: 10.1109/TAP.2020.3016379
    [12] 张治强, 赵加宁, 李芳, 等. 宽带Ka波段平面反射阵列天线设计[J]. 强激光与粒子束, 2022, 34:083001 doi: 10.11884/HPLPB202234.220037

    Zhang Zhiqiang, Zhao Jianing, Li Fang, et al. Design of a broadband Ka-band reflectarray antenna[J]. High Power Laser and Particle Beams, 2022, 34: 083001 doi: 10.11884/HPLPB202234.220037
    [13] Wang Shaofei, Xie Yanzhao, Qiu Yangxin. A kind of tightly coupled array with nonuniform short-circuited branches for the radiation of UWB pulses[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(3): 2259-2267. doi: 10.1109/TAP.2023.3240624
    [14] Yu Longzhou, Yuan Chengwei, He Juntao, et al. Beam steerable array antenna based on rectangular waveguide for high-power microwave applications[J]. IEEE Transactions on Plasma Science, 2019, 47(1): 535-541. doi: 10.1109/TPS.2018.2884290
    [15] Goulas A, Zhang Shiyu, McGhee J R, et al. Fused filament fabrication of functionally graded polymer composites with variable relative permittivity for microwave devices[J]. Materials & Design, 2020, 193: 108871.
    [16] Shahrubudin N, Lee T C, Ramlan R. An overview on 3D printing technology: technological, materials, and applications[J]. Procedia Manufacturing, 2019, 35: 1286-1296. doi: 10.1016/j.promfg.2019.06.089
    [17] Wu Gengbo, Zeng Yuansong, Chan K F, et al. 3-D printed terahertz lens with circularly polarized focused near field[C]//2019 13th European Conference on Antennas and Propagation (EuCAP). 2019: 1-4.
    [18] Massaccesi A, Pirinoli P, Bertana V, et al. 3D-printable dielectric transmitarray with enhanced bandwidth at millimeter-waves[J]. IEEE Access, 2018, 6: 46407-46418. doi: 10.1109/ACCESS.2018.2865353
    [19] Zainud-Deen S H, Gaber S M, Malhat H A, et al. B10. Multilayer dielectric resonator antenna transmitarray for near-field and far-field fixed RFID reader[C]//2012 29th National Radio Science Conference (NRSC). 2012: 81-88.
    [20] 龚鸿州, 张建德, 袁成卫, 等. 一种高功率微波宽带紧耦合偶极子阵列天线[J]. 强激光与粒子束, 2024, 36:013009 doi: 10.11884/HPLPB202335.230139

    Gong Hongzhou, Zhang Jiande, Yuan Chengwei, et al. A tightly coupled dipole array antenna with high power and broadband[J]. High Power Laser and Particle Beams, 2024, 36: 013009 doi: 10.11884/HPLPB202335.230139
    [21] Fröhlich H, Paranjape B V. Dielectric breakdown in solids[J]. Proceedings of the Physical Society. Section B, 1956, 69(1): 21-32. doi: 10.1088/0370-1301/69/1/304
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  81
  • HTML全文浏览量:  33
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-02
  • 修回日期:  2024-09-02
  • 录用日期:  2024-08-26
  • 网络出版日期:  2024-09-07

目录

    /

    返回文章
    返回