The 1.5G “three-high/one-excellent” YDF specialty laser fiber
-
摘要: 面向高端特种光纤激光器研制需求,突破限制光纤激光器系统功率输出和性能提升的技术瓶颈,中国工程物理研究院化工材料研究所高功率光纤激光技术所地联合创新中心团队采用模式裁剪制备工艺技术,率先推出了国内首创、特别适合976 nm-LD端面泵浦方式(976技术路线)的第1.5代YDF特种激光光纤,有效提升了光纤激光系统的模式不稳定阈值(TMI),显著优化了激光输出的光束质量。相对于目前普遍使用的第1.0代铝磷硅三元体系光纤(Yb-APS),第1.5代YDF特种激光光纤的激光功率提升约20%,光束质量M2优化约20%,集中展现了高功率、高效率、高TMI阈值、M2优化的“三高一优”的技术特点,可供工业市场高端客户选择和强激光技术领域应用。Abstract: For the development of high-end fiber lasers and breaking through the technical bottlenecks limiting the output power and performance improvement of fiber laser systems, the Joint -Innovation Center of High Power Fiber Laser Technology, Institute of Chemical Materials (ICM) of China Academy of Engineering Physics (CAEP) , adopted mode-tailoring fabrication process technology, theoretically designed and firstly home-made 1.5th-generation (1.5G) YDF specialty laser fibers, particularly suitable for 976nm-LD end-pumping method (976-technology route) to effectively improve the threshold of mode instability (TMI) and significantly optimize the beam quality of laser output. Compared with currently widely-used 1.0G Yb-APS fiber, 1.5G YDF specialty laser fiber shows about 20% improvement both in laser output power and beam quality. The 1.5G YDF specialty laser fibers fully demonstrate “three-high/one-excellent” technical characteristics of high power, high efficiency, high TMI threshold, and M2 optimization, which can be selected by high-end customers in the industrial market and/or applied in high power laser fields.
-
Key words:
- fiber laser /
- threshold of mode instability /
- beam quality /
- single mode /
- fiber design and fabrication /
- laser fiber
-
表 1 第1.5代YDF特种激光光纤参数
Table 1. 1.5G-YDF specialty laser fiber parameters
1.5G-YDF laser fiber laser power/kW beam quality M2 LMA-14/250-YDF 2~3 ~1.05 LMA-20/400-YDF 3~4 ~1.10 LMA-25/400-YDF 4~6 ~1.20 PLMA-20/400-YDF 2~3 ~1.20 PLMA-25/400-YDF 3~5 ~1.30 表 2 第1.5代LMA-14/250-YDF特种激光光纤参数
Table 2. 1.5G LMA-14/250-YDF specialty laser fiber parameters
parameters unit specification peak cladding absorption @915 nm dB/m 0.50±0.15 peak cladding absorption @976 nm dB/m 1.50±0.25 cladding attenuation@1 095 nm dB/km ≤10 core attenuation@1 200 nm dB/km ≤10 core attenuation@1 300 nm dB/km ≤15 core NA — 0.070±0.005 cladding NA(5%) — ≥0.46 core/clad offset μm ≤1.0 core diameter μm 14.3±0.5 clad diameter (flat-to-flat) μm 250±5.0 max. output power kW ≥2.0 slope efficiency@976 nm % ≥78 beam quality M2 — ~1.05 -
[1] Eidam T, Wirth C, Jauregui C, et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers[J]. Optics Express, 2011, 19(14): 13218-13224. doi: 10.1364/OE.19.013218 [2] Otto H J, Stutzki F, Jansen F, et al. Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers[J]. Optics Express, 2012, 20(14): 15710-15722. doi: 10.1364/OE.20.015710 [3] Stutzki F, Otto H J, Jansen F, et al. High-speed modal decomposition of mode instabilities in high-power fiber lasers[J]. Optics Letters, 2011, 36(23): 4572-4574. doi: 10.1364/OL.36.004572 [4] Tao Rumao, Ma Pengfei, Wang Xiaolin, et al. Study of mode instabilities in high power fiber amplifiers by detecting scattering light[C]//Proceedings of Fiber-Based Technologies and Applications. 2014: FTh2F. 2. [5] 陶汝茂, 周朴, 肖虎, 等. 高功率光纤激光中模式不稳定性现象研究进展[J]. 激光与光电子学进展, 2014, 51:020001Tao Rumao, Zhou Pu, Xiao Hu, et al. Progress of study on mode instability in high power fiber amplifiers[J]. Laser & Optoelectronics Progress, 2014, 51: 020001 [6] 史尘, 陶汝茂, 王小林, 等. 光纤激光模式不稳定的新现象与新进展[J]. 中国激光, 2017, 44:0201004 doi: 10.3788/CJL201744.0201004Shi Chen, Tao Rumao, Wang Xiaolin, et al. New progress and phenomena of modal instability in fiber lasers[J]. Chinese Journal of Lasers, 2017, 44: 0201004 doi: 10.3788/CJL201744.0201004 [7] Brar K, Savage-Leuchs M, Henrie J, et al. Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers[C]//Proceedings of SPIE 8961, Fiber Lasers XI: Technology, Systems, and Applications. 2014: 89611R. [8] Otto H J, Modsching N, Jauregui C, et al. Wavelength dependence of maximal diffraction-limited output power of fiber lasers[C]//Proceedings of Advanced Solid State Lasers 2014. 2014: AM5A. 44. [9] Hejaz K, Norouzey A, Poozesh R, et al. Controlling mode instability in a 500 W ytterbium-doped fiber laser[J]. Laser Physics, 2014, 24: 025102. doi: 10.1088/1054-660X/24/2/025102 [10] 曾令筏, 文榆钧, 王小林, 等. 高功率光纤激光器反常模式不稳定效应实验研究[J]. 中国激光, 2024, 51:0601001 doi: 10.3788/CJL230782Zeng Lingfa, Wen Yujun, Wang Xiaolin, et al. Experimental research on abnormal transverse mode instability in high-power fiber lasers[J]. Chinese Journal of Lasers, 2024, 51: 0601001 doi: 10.3788/CJL230782 [11] 陈益沙, 廖雷, 李进延. 光纤激光器模式不稳定机理及抑制方法研究进展[J]. 激光与光电子学进展, 2017, 54:080001Chen Yisha, Liao Lei, Li Jinyan. Research progress on mode instability mechanism and suppression methods for fiber lasers[J]. Laser & Optoelectronics Progress, 2017, 54: 080001 [12] 林傲祥, 彭昆, 俞娟, 等. 高功率连续光纤激光系统热效应及其抑制措施[J]. 强激光与粒子束, 2022, 34:011005 doi: 10.11884/HPLPB202234.210336Lin Aoxiang, Peng Kun, Yu Juan, et al. Thermal effect and its suppression in high-power continuous-wave fiber laser system[J]. High Power Laser and Particle Beams, 2022, 34: 011005 doi: 10.11884/HPLPB202234.210336 [13] 林傲祥, 肖起榕, 倪力, 等. 国产YDF有源光纤实现单纤20 kW激光输出[J]. 中国激光, 2021, 48:0916003Lin Aoxiang, Xiao Qirong, Ni Li, et al. Domestic YDF active fiber realizes single fiber 20 kW laser output[J]. Chinese Journal of Lasers, 2021, 48: 0916003 [14] 林傲祥, 倪力, 彭昆, 等. 国产千瓦级LMA-14/250-YDF有源激光光纤[J]. 中国激光, 2020, 47:1216003 doi: 10.3788/CJL202047.1216003Lin Aoxiang, Ni Li, Peng Kun, et al. Domestic kilowatt level LMA-14/250-YDF active laser fiber[J]. Chinese Journal of Lasers, 2020, 47: 1216003 doi: 10.3788/CJL202047.1216003 [15] 林傲祥, 倪力, 彭昆, 等. 国产20/400μm规格有源光纤实现3kW激光输出[J]. 中国激光, 2017, 44:0115001 doi: 10.3788/CJL201744.0115001Lin Aoxiang, Ni Li, Peng Kun, et al. Domestic 20/400 μ m specification active fiber achieves 3kw laser output[J]. Chinese Journal of Lasers, 2017, 44: 0115001 doi: 10.3788/CJL201744.0115001