留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电介质的2.5 MeV小型化高束流功率加速管设计

范雨轩 杨京鹤 朱志斌 王博 王常强 雷瀚

范雨轩, 杨京鹤, 朱志斌, 等. 基于电介质的2.5 MeV小型化高束流功率加速管设计[J]. 强激光与粒子束, 2025, 37: 054003. doi: 10.11884/HPLPB202537.240083
引用本文: 范雨轩, 杨京鹤, 朱志斌, 等. 基于电介质的2.5 MeV小型化高束流功率加速管设计[J]. 强激光与粒子束, 2025, 37: 054003. doi: 10.11884/HPLPB202537.240083
Fan Yuxuan, Yang Jinghe, Zhu Zhibin, et al. Design of a 2.5 MeV miniaturization accelerator with high average beam power based on dielectric materials[J]. High Power Laser and Particle Beams, 2025, 37: 054003. doi: 10.11884/HPLPB202537.240083
Citation: Fan Yuxuan, Yang Jinghe, Zhu Zhibin, et al. Design of a 2.5 MeV miniaturization accelerator with high average beam power based on dielectric materials[J]. High Power Laser and Particle Beams, 2025, 37: 054003. doi: 10.11884/HPLPB202537.240083

基于电介质的2.5 MeV小型化高束流功率加速管设计

doi: 10.11884/HPLPB202537.240083
基金项目: 中国原子能科学研究院青年英才项目(YC222412001504)
详细信息
    作者简介:

    范雨轩,738854448@qq.com

  • 中图分类号: TL11

Design of a 2.5 MeV miniaturization accelerator with high average beam power based on dielectric materials

  • 摘要: 横向尾场导致的束流崩溃效应是限制加速器向强流小型化发展的主要因素。介质金属盘片混合加速结构是具有小型化高束流功率特性的新型加速结构,但其结构较为复杂,导致装配和调谐困难。通过开展介质金属盘片混合加速结构研究,明确介质材料对腔体性能的影响,从而优化结构以解决装配和调谐的问题。该结构优化后可以大幅度降低横向尾场导致的束流崩溃,增大束流功率。基于优化后的结构,设计一只工作频率为S波段2856 MHz,具有小型化高束流平均功率特性的2.5 MeV加速管。介绍了加速结构的优化及加速管的物理设计,采用数值计算方法完成了加速管束流动力学设计,并用PARMELA进行了验证计算。本研究明确该结构具有成为新一代大束流功率辐照直线加速器的潜力。
  • 图  1  介质金属盘片混合加速结构示意图

    Figure  1.  Hybrid dielectric-iris-loaded accelerating structure

    图  2  盘荷波导以及介质金属盘片混合加速的结构对比及参数

    Figure  2.  Comparison between a conventional iris-loaded accelerating structure and a hybrid dielectric-iris-loaded accelerating structure

    图  3  优化后的介质金属盘片混合加速结构

    Figure  3.  Optimized hybrid dielectric-iris-loaded accelerating structure

    图  4  功率随纵向位置的变化

    Figure  4.  Power changes with lengthwise position

    图  5  电场强度随纵向位置的变化

    Figure  5.  Electric field intensity changes with lengthwise position

    图  6  相位能谱图

    Figure  6.  Phase-energy curve

    图  7  中心轴线加速电场

    Figure  7.  Electric field intensity along central axis

    图  8  中心轴线聚焦磁场

    Figure  8.  Magnetic field along central axis

    图  9  沿加速管的束流包络

    Figure  9.  Beam envelop through the linac

    图  10  加速管出口处束流束斑与能量分布

    Figure  10.  Beam size and energy distribution at the end of the linac

    表  1  盘荷波导与介质金属盘片混合加速结构的结构参数对照

    Table  1.   Comparison of structural parameters between the disk-loaded accelerating structure and the hybrid dielectric-iris-loaded accelerating structure

    structure L/mm a/mm g/mm b/mm h/mm ht/mm
    disk-loaded accelerating structure 34.99 10.75 19.99 41.1
    hybrid dielectric-iris-loaded accelerating structure 34.99 10.75 19.99 31.35 20 5
    下载: 导出CSV

    表  2  盘荷波导与介质金属盘片混合加速结构的微波参数对照

    Table  2.   Comparison of microwave parameters between the disk-loaded accelerating structure and the hybrid dielectric-iris-loaded accelerating structure

    structure f/MHz R/Q of TM01 Q vg/c R/Q of HEM11
    disk-loaded accelerating structure 2856 4656 14096 0.0115 4300
    hybrid dielectric-iris-loaded accelerating structure 2856 2626 7140 0.0061 2067
    下载: 导出CSV

    表  3  加速管主要设计参数和运行参数指标

    Table  3.   Design and operation parameters of the linac

    f/MHz Ein/keV εrms/(μm·rad) Pin/MW Eoutput/MeV $ {\bar {{P}}}_{\mathrm{I}} $/kW Ib/mA duty factor/%
    2856 50 2.5 3.5 2.5 16 800 0.8
    下载: 导出CSV

    表  4  加速管各单腔参数

    Table  4.   single cavity parameters of linac

    cavity βg cavity number L/mm a/mm g/mm h/mm ht/mm Q R/(MΩ/m) vg
    bunch cavity 1 0.5 2 17.5 10.75 12.5 20 5 4000 5 0.0048
    bunch cavity 2 0.7 2 24.5 10.75 19.5 20 5 5800 10 0.0057
    accelerating cavity 1 11 35 10.75 30 20 5 7140 17 0.0061
    下载: 导出CSV
  • [1] Flesher G T, Cohn G I. Dielectric loading for waveguide linear accelerators[J]. Transactions of the American Institute of Electrical Engineers, 1951, 70(1): 887-893. doi: 10.1109/T-AIEE.1951.5060496
    [2] Woode R A, Ivanov E N, Tobar M E, et al. Measurement of dielectric loss tangent of alumina at microwave frequencies and room temperature[J]. Electronics Letters, 1994, 30(25): 2120-2122. doi: 10.1049/el:19941470
    [3] Templeton A, Wang X R, Penn S J, et al. Microwave dielectric loss of titanium oxide[J]. Journal of the American Ceramic Society, 2000, 83(1): 95-100. doi: 10.1111/j.1151-2916.2000.tb01154.x
    [4] Breeze J D, Aupi X, Alford N M. Ultralow loss polycrystalline alumina[J]. Applied Physics Letters, 2002, 81(26): 5021-5023. doi: 10.1063/1.1532553
    [5] Zou Peng, Xiao Liling, Sun Xiang, et al. A hybrid dielectric and iris loaded periodic accelerating structure[C]//PACS2001. Proceedings of the 2001 Particle Accelerator Conference (Cat. No. 01CH37268). 2001: 3966-3968.
    [6] Wu Congfeng, Hui Lin, Lin Wang, et al. Model cavity investigations and calculations on HOM for an X-band hybrid dielectric-iris-loaded accelerating structure[C]//2007 IEEE Particle Accelerator Conference (PAC). 2007: 2149-2151.
    [7] Zou Peng, Xiao Liling, Sun Xiang, et al. Hybrid dielectric and iris-loaded periodic accelerating structure[J]. Journal of Applied Physics, 2001, 90(4): 2017-2023. doi: 10.1063/1.1383578
    [8] 吴丛凤, 董赛, 林辉, 等. X波段介质和金属膜片混合加载行波加速结构的传播特性计算及模型腔的有关研究[J]. 高能物理与核物理, 2006, 30(s1):57-59 doi: 10.3321/j.issn:0254-3052.2006.z1.018

    Wu Congfeng, Dong Sai, Ling Hui, et al. Calculations of propagation characteristics and the model cavity investigations for a X-band hybrid dielectric-iris-loaded traveling accelerating structure[J]. High Energy Physics and Nuclear Physics, 2006, 30(s1): 57-59 doi: 10.3321/j.issn:0254-3052.2006.z1.018
    [9] Wu Congfeng, Hui Lin, Dong Sai. The studies of X-band hybrid dielectric-iris-loaded accelerating structure[C]//Proceedings of the 2005 Particle Accelerator Conference. 2005: 2747-2749.
    [10] Wu Congfeng, Hui Lin, He Xiaodong, et al. Coupler design for X-band hybrid dielectric-iris-loaded accelerator[C]//2007 IEEE Particle Accelerator Conference (PAC). 2007: 2152-2154.
    [11] He Xiaodong, Wu Congfeng, Feng Guangyao, et al. Development of an X-band hybrid dielectric-iris-loaded accelerator[C]//Proceedings of EPAC08. 2008: WEPP083.
    [12] He Xiaodong, Wu Congfeng, Feng Guangyao, et al. Physical calculation for an X-band hybrid dielectric-iris-loaded accelerator[J]. Chinese Physics C, 2009, 33(S2): 109-111. doi: 10.1088/1674-1137/33/S2/028
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  84
  • HTML全文浏览量:  31
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-01
  • 修回日期:  2024-06-29
  • 录用日期:  2024-08-26
  • 网络出版日期:  2025-02-22
  • 刊出日期:  2025-03-31

目录

    /

    返回文章
    返回