留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浸没射流高韦伯数条件下气溶胶水洗去除

吕强 田超 佟立丽 曹学武

吕强, 田超, 佟立丽, 等. 浸没射流高韦伯数条件下气溶胶水洗去除[J]. 强激光与粒子束, 2025, 37: 026003. doi: 10.11884/HPLPB202537.240150
引用本文: 吕强, 田超, 佟立丽, 等. 浸没射流高韦伯数条件下气溶胶水洗去除[J]. 强激光与粒子束, 2025, 37: 026003. doi: 10.11884/HPLPB202537.240150
Lü Qiang, Tian Chao, Tong Lili, et al. Aerosol scrubbing removal under high Weber number immersed jet condition[J]. High Power Laser and Particle Beams, 2025, 37: 026003. doi: 10.11884/HPLPB202537.240150
Citation: Lü Qiang, Tian Chao, Tong Lili, et al. Aerosol scrubbing removal under high Weber number immersed jet condition[J]. High Power Laser and Particle Beams, 2025, 37: 026003. doi: 10.11884/HPLPB202537.240150

浸没射流高韦伯数条件下气溶胶水洗去除

doi: 10.11884/HPLPB202537.240150
详细信息
    作者简介:

    吕 强,lvqiang1227@sjtu.edu.cn

    通讯作者:

    佟立丽,lltong@sjtu.edu.cn

  • 中图分类号: TN124

Aerosol scrubbing removal under high Weber number immersed jet condition

  • 摘要: 基于射流穿透长度与夹带液滴分数等水力模型,建立了混合气体射流条件下气溶胶惯性碰撞去除模型,通过对注入区空间离散构建了高韦伯数射流流型含气芯夹带特征的气溶胶水洗去除分析方法。采用气溶胶水洗机理实验装置开展的两组蒸汽份额为64%,淹没深度为0.7 m,质量通量分别为217 kg/(m2·s)和120 kg/(m2·s)实验,以及引用淹没深度为0.5 m、质量通量为95 kg/(m2·s)的纯不凝性气体载带气溶胶的RCA2实验结果,对分析方法进行了验证。结果表明:考虑射流水力学特征的气溶胶水洗去除模型的预测结果与实验值符合较好,通过参数分析发现随着射流韦伯数的增加,射流穿透长度和夹带液滴分数均增加,增强了气溶胶与液滴的惯性碰撞作用。
  • 图  1  射流区域示意图

    Figure  1.  Jet area diagram

    图  2  射流空间节点划分图

    Figure  2.  Jet space node division diagram

    图  3  SCAPS-1实验参数图

    Figure  3.  Experimental parameter diagram of SCAPS-1

    图  4  SCAPS-2实验参数图

    Figure  4.  Experimental parameter diagram of SCAPS-2

    图  5  气溶胶净化因子计算结果比对

    Figure  5.  Comparison with DF experimental data and model calculation results

    图  6  水力学模型计算结果

    Figure  6.  Hydraulic model calculation results

    表  1  实验条件及结果

    Table  1.   Test conditions and results

    experiment mass flux/
    (kg·m−2·s−1)
    Weber
    number
    steam
    fraction/%
    submerged
    depth/m
    material mass median
    diameter/μm
    decontamination
    factor
    SCAPS-1 217 3.5×106 64 0.7 TiO2 0.5 215±62.4
    SCAPS-2 120 1.8×106 64 0.7 TiO2 0.5 58±16.8
    RCA2[6] 95 2.9×105 0 0.5 Ni 1.3 28±12.3
    下载: 导出CSV
  • [1] Dong Shihang, Yang Jun. Overview of the experimental studies and numerical simulations on the filtered containment venting systems with wet scrubbers[J]. Annals of Nuclear Energy, 2019, 132: 461-485. doi: 10.1016/j.anucene.2019.04.042
    [2] Berzal M E, Marcos C, Swiderska-kowalczyk M, et al. State-of-the-art review on fission products’ aerosol pool scrubbing under severe accident conditions[R]. Luxembourg: European Commission, 1995.
    [3] Owczarski P C, Burk K W. SPARC-90: a code for calculating fission product capture in suppression pools[R]. Washington: Nuclear Regulatory Commission, 1991.
    [4] Ramsdale S A, Guentay S, Friederichs H G. BUSCA-JUN91 reference manual[R]. Villigen: Paul Scherrer Institute (PSI), 1995.
    [5] 周彦, 佟立丽, 曹学武. 低流速排放下气溶胶水洗模型[J]. 原子能科学技术, 2020, 54(5):923-929 doi: 10.7538/yzk.2019.youxian.0405

    Zhou Yan, Tong Lili, Cao Xuewu. Aerosol pool scrubbing model under low velocity discharge[J]. Atomic Energy Science and Technology, 2020, 54(5): 923-929 doi: 10.7538/yzk.2019.youxian.0405
    [6] Herranz L E, Lopez C, Penalva J. Investigation on jet scrubbing in nuclear reactor accidents: from experimental data to an empirical correlation[J]. Progress in Nuclear Energy, 2018, 107: 72-82. doi: 10.1016/j.pnucene.2018.04.019
    [7] Lind T, Dehbi A, Güntay S. Aerosol retention in the flooded steam generator bundle during SGTR[J]. Nuclear Engineering and Design, 2011, 241(1): 357-365. doi: 10.1016/j.nucengdes.2010.10.025
    [8] 李玉祥, 吴艳, 曹学武. 不同流型下气溶胶水洗效果影响因素实验研究[J]. 原子能科学技术, 2023, 57(2):276-283 doi: 10.7538/yzk.2022.youxian.0149

    Li Yuxiang, Wu Yan, Cao Xuewu. Experimental study on influencing factor of aerosol pool scrubbing under different flow regimes[J]. Atomic Energy Science and Technology, 2023, 57(2): 276-283 doi: 10.7538/yzk.2022.youxian.0149
    [9] Berna C, Escrivá A, Muñoz-Cobo J L, et al. Enhancement of the SPARC90 code to pool scrubbing events under jet injection regime[J]. Nuclear Engineering and Design, 2016, 300: 563-577. doi: 10.1016/j.nucengdes.2016.02.027
    [10] Allelein J H, Neu K, Skorek T, et al. European validation of the integral code ASTEC (EVITA)[R]. Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, 2004.
    [11] Hoefele E O, Brimacombe J K. Flow regimes in submerged gas injection[J]. Metallurgical Transactions B, 1979, 10(4): 631-648. doi: 10.1007/BF02662566
    [12] Berna C, Escrivá A, Muñoz-Cobo J L, et al. Review of droplet entrainment in annular flow: characterization of the entrained droplets[J]. Progress in Nuclear Energy, 2015, 79: 64-86. doi: 10.1016/j.pnucene.2014.11.011
    [13] Ghiaasiaan S M, Yao G F. A theoretical model for deposition of aerosols in rising spherical bubbles due to diffusion, convection, and inertia[J]. Aerosol Science and Technology, 1997, 26(2): 141-153. doi: 10.1080/02786829708965420
    [14] Slinn W G N. Precipitation scavenging: some problems, approximate solutions and suggestions for future research[R]. Richland: Battelle Pacific Northwest Laboratory, 1974.
    [15] Flagan R C, Seinfeld J H. Fundamentals of air pollution engineering[M]. Englewood Cliffs: Prentice-Hall, 1988.
    [16] Kaneko I, Fukasawa M, Naito M, et al. Experiment study on aerosol removal effect by pool scrubbing[C]//22nd DOE/NRC Nuclear Air Cleaning and Treatment Conference. 1992.
    [17] Li Yuxiang, Tong Lili, Cao Xuewu. Experimental study on influencing factors of aerosol retention by pool scrubbing[J]. Frontiers in Energy Research, 2021, 9: 675841. doi: 10.3389/fenrg.2021.675841
    [18] Moffat R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17. doi: 10.1016/0894-1777(88)90043-X
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  82
  • HTML全文浏览量:  37
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-08
  • 修回日期:  2024-07-23
  • 录用日期:  2024-09-24
  • 网络出版日期:  2024-12-20
  • 刊出日期:  2025-02-15

目录

    /

    返回文章
    返回