留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于串并联丝阵与放电相似性的水中丝爆丝阵负载优化设计

钱盾 王异凡 朱郁馨 王尊 冯宇哲

钱盾, 王异凡, 朱郁馨, 等. 基于串并联丝阵与放电相似性的水中丝爆丝阵负载优化设计[J]. 强激光与粒子束, 2025, 37: 01500. doi: 10.11884/HPLPB202537.240158
引用本文: 钱盾, 王异凡, 朱郁馨, 等. 基于串并联丝阵与放电相似性的水中丝爆丝阵负载优化设计[J]. 强激光与粒子束, 2025, 37: 01500. doi: 10.11884/HPLPB202537.240158
Qian Dun, Wang Yifan, Zhu Yuxin, et al. Optimal wire-array design for underwater electrical wire explosion based on parallel-series wire-array and discharge similarity[J]. High Power Laser and Particle Beams, 2025, 37: 01500. doi: 10.11884/HPLPB202537.240158
Citation: Qian Dun, Wang Yifan, Zhu Yuxin, et al. Optimal wire-array design for underwater electrical wire explosion based on parallel-series wire-array and discharge similarity[J]. High Power Laser and Particle Beams, 2025, 37: 01500. doi: 10.11884/HPLPB202537.240158

基于串并联丝阵与放电相似性的水中丝爆丝阵负载优化设计

doi: 10.11884/HPLPB202537.240158
详细信息
    作者简介:

    钱 盾,qiandun94@gmail.com

    通讯作者:

    冯宇哲,2855322133@qq.com

  • 中图分类号: TN78

Optimal wire-array design for underwater electrical wire explosion based on parallel-series wire-array and discharge similarity

  • 摘要: 为提高水中金属丝电爆炸(水中丝爆)产生的冲击波,将多根丝并联形成丝阵负载,但此方法会降低负载电阻导致沉积功率低。为解决这一问题,通过电流“换向件”设计了总质量不变前提下、整体电阻可变的多种串并联丝阵,提出负载与电源内阻动态匹配是理想放电模式。借助串并联丝阵验证了单丝放电相似性,实现了高电压大装置的小型化验证。通过放电相似性和串并联丝阵,提出水中丝爆丝阵负载优化设计方法,实现了给定能量和金属丝质量下最优负载确定方法。
  • 图  1  实验装置

    Figure  1.  Experimental setup

    图  2  四种柱面丝阵设计图

    Figure  2.  Four designs of cylindrical wire-array

    图  3  四种丝阵的沉积功率与能量

    Figure  3.  Deposition power and energy of four wire-arrays

    图  4  冲击波幅值随充电电压和连接方式变化

    Figure  4.  Shock wave generated by different initial voltage and wire-array connection

    图  5  各相变起始时刻丝阵电阻与电源内阻的比值

    Figure  5.  Rate of different wire-array resistance and power source resistance in different states

    图  6  单丝放电和丝阵放电的电流、电压和压力波形比较

    Figure  6.  Comparison of current, voltage and pressure between single wire and wire in wire-array at different wire length

    表  1  不同储能下不同丝阵的电爆炸冲击波峰值

    Table  1.   Shock wave generated by different stored energy and wire-array connection

    initial voltage/kV stored energy/J shock wave/MPa
    P1S8 P2S4 P4S2 P8S1
    15 56 3.2 8.1 1.9 ~0
    20 100 8.7 16.3 11.0 0.67
    25 156 12.0 20.1 17.0 11.00
    30 225 13.0 23.0 30.0 22.00
    下载: 导出CSV

    表  2  不同状态下四种丝阵的电阻

    Table  2.   Resistance of four wire-arrays at different states

    state resistance/Ω
    P1S8 P2S4 P4S2 P8S1
    room temperature 0.36 0.09 0.023 0.0056
    melting started 2.0 0.5 0.13 0.032
    melting completed 3.9 1.0 0.24 0.060
    vaporization started 5.4 1.3 0.33 0.084
    vaporization completed 126 32 7.9 2.0
    下载: 导出CSV
  • [1] Krasik Y E, Grinenko A, Sayapin A, et al. Underwater electrical wire explosion and its applications[J]. IEEE Transactions on Plasma Science, 2008, 36(2): 423-434. doi: 10.1109/TPS.2008.918766
    [2] Kolacek K, Prukner V, Schmidt J, et al. A potential environment for lasing below 15 nm initiated by exploding wire in water[J]. Laser and Particle Beams, 2010, 28(1): 61-67. doi: 10.1017/S0263034609990577
    [3] Sheftman D, Krasik Y E. Investigation of electrical conductivity and equations of state of non-ideal plasma through underwater electrical wire explosion[J]. Physics of Plasmas, 2010, 17: 112702. doi: 10.1063/1.3497010
    [4] Claverie A, Deroy J, Boustie M, et al. Experimental characterization of plasma formation and shockwave propagation induced by high power pulsed underwater electrical discharge[J]. Review of Scientific Instruments, 2014, 85: 063701. doi: 10.1063/1.4879715
    [5] Tobe T, Kato M, Obara H. Pressure pulses produced by underwater wire explosions in electric discharge metal forming[J]. Bulletin of JSME, 1979, 22(166): 613-619. doi: 10.1299/jsme1958.22.613
    [6] Oyane M, Masaki S. Fundamental study on electrohydraulic forming[J]. Bulletin of JSME, 1964, 7(26): 474-480. doi: 10.1299/jsme1958.7.474
    [7] Oyane M, Masaki S. Fundamental study on electrohydraulic forming: II. The effect of kinds of fuse wires and circuit inductance on pressure pulse[J]. Bulletin of JSME, 1965, 8(30): 251-258. doi: 10.1299/jsme1958.8.251
    [8] Oyane M, Masaki S. Fundamental study on electrohydraulic forming: III. The effect of diameter of fuse wire and circuit inductance on pressure pulse[J]. Bulletin of JSME, 1965, 8(30): 259-263. doi: 10.1299/jsme1958.8.259
    [9] Chace W G, Moore H K. Exploding wires[M]. New York: Plenum Press, 1962: 195-206.
    [10] Ide M, Irie S, Matsuo N, et al. Research about pulverization of rice using underwater shock wave by electric discharge[C]//2010 Pressure Vessels and Piping Division/K-PVP Conference. 2010: 477-481.
    [11] Kuraya E, Touyama A, Nakada S, et al. Underwater shockwave pretreatment process to improve the scent of extracted Citrus junos Tanaka (Yuzu) Juice[J]. International Journal of Food Science, 2017, 2017: 2375181.
    [12] Yasuda A, Kuraya E, Touyama A, et al. Underwater shockwave pretreatment process for improving carotenoid content and yield of extracted carrot (Daucus carota L.) juice[J]. Journal of Food Engineering, 2017, 211: 15-21. doi: 10.1016/j.jfoodeng.2017.04.026
    [13] Shimojima K, Higa O, Higa Y, et al. Experimental verification of the softening of the pork using underwater shock waves generated by wire electrical discharges[J]. Materials Science Forum, 2018, 910: 176-179. doi: 10.4028/www.scientific.net/MSF.910.176
    [14] Prieto F E, Loske A M, Yarger F L. An underwater shock wave research device[J]. Review of Scientific Instruments, 1991, 62(7): 1849-1854. doi: 10.1063/1.1142527
    [15] Cho C H, Park S H, Choi Y W, et al. Production of nanopowders by wire explosion in liquid media[J]. Surface and Coatings Technology, 2007, 201(9/11): 4847-4849.
    [16] Cho C, Choi Y W, Kang C, et al. Effects of the medium on synthesis of nanopowders by wire explosion process[J]. Applied Physics Letters, 2007, 91: 141501. doi: 10.1063/1.2794724
    [17] 张永民, 邱爱慈, 周海滨, 等. 面向化石能源开发的电爆炸冲击波技术研究进展[J]. 高电压技术, 2016, 42(4):1009-1017

    Zhang Yongmin, Qiu Aici, Zhou Haibin, et al. Research progress in electrical explosion shockwave technology for developing fossil energy[J]. High Voltage Engineering, 2016, 42(4): 1009-1017
    [18] Han Ruoyu, Zhou Haibin, Liu Qiaojue, et al. Generation of electrohydraulic shock waves by plasma-ignited energetic materials: I. Fundamental mechanisms and processes[J]. IEEE Transactions on Plasma Science, 2015, 43(12): 3999-4008. doi: 10.1109/TPS.2015.2468064
    [19] 邱爱慈, 张永民, 蒯斌, 等. 高功率脉冲技术在非常规天然气开发中应用的设想[C]//第二届中国工程院/国家能源局能源论坛论文集. 北京: 中国工程院, 2012: 1112-1124

    Qiu Aici, Zhang Yongmin, Kuai Bin, et al. Application of high power pulse technology in unconventional gas development[C]//The 2nd China Academy of Engineering/National Energy Administration Forum. Beijing: Chinese Academy of Engineering, 2012: 1112-1124
    [20] 曹落霞, 胡海波, 陈永涛, 等. 磁驱动飞片加载下纯铁的冲击相变和层裂特性[J]. 高压物理学报, 2015, 29(4):248-254 doi: 10.11858/gywlxb.2015.04.002

    Cao Luoxia, Hu Haibo, Chen Yongtao, et al. Shock-induced phase transition and spallation in pure iron under magnetically driven flyer plate loading[J]. Chinese Journal of High Pressure Physics, 2015, 29(4): 248-254 doi: 10.11858/gywlxb.2015.04.002
    [21] Gregory K B, Vidic R D, Dzombak D A. Water management challenges associated with the production of shale gas by hydraulic fracturing[J]. Elements, 2011, 7(3): 181-186. doi: 10.2113/gselements.7.3.181
    [22] Grinenko A, Gurovich V T, Krasik Y E. Implosion in water medium and its possible application for the inertial confinement fusion target ignition[J]. Physics of Plasmas, 2007, 14: 012701. doi: 10.1063/1.2424885
    [23] Tobe T, Kato M, Obara H. Energy consumption at underwater exploding-wire gap in electric discharge metal forming[J]. Bulletin of JSME, 1978, 21(162): 1780-1786. doi: 10.1299/jsme1958.21.1780
    [24] Rodriguez G, Roberts J P, Echave J A, et al. Laser shadowgraph measurements of electromagnetically-driven cylindrical shock-wave implosions in water[J]. Journal of Applied Physics, 2003, 93(3): 1791-1797. doi: 10.1063/1.1535253
    [25] Rousskikh A G, Oreshkin V I, Labetsky A Y, et al. Electrical explosion of conductors in the high-pressure zone of a convergent shock wave[J]. Technical Physics, 2007, 52(5): 571-576. doi: 10.1134/S1063784207050064
    [26] Krasik Y E, Grinenko A, Sayapin A, et al. Generation of sub-Mbar pressure by converging shock waves produced by the underwater electrical explosion of a wire array[J]. Physical Review E, 2006, 73: 057301. doi: 10.1103/PhysRevE.73.057301
    [27] Fedotov-Gefen A, Efimov S, Gilburd L, et al. Extreme water state produced by underwater wire-array electrical explosion[J]. Applied Physics Letters, 2010, 96: 221502. doi: 10.1063/1.3446832
    [28] Fedotov-Gefen A, Efimov S, Gilburd L, et al. Generation of a 400 GPa pressure in water using converging strong shock waves[J]. Physics of Plasmas, 2011, 18: 062701. doi: 10.1063/1.3599425
    [29] Antonov O, Gilburd L, Efimov S, et al. Generation of extreme state of water by spherical wire array underwater electrical explosion[J]. Physics of Plasmas, 2012, 19: 102702. doi: 10.1063/1.4757984
    [30] Gilburd L, Efimov S, Fedotov Gefen A, et al. Modified wire array underwater electrical explosion[J]. Laser and Particle Beams, 2012, 30(2): 215-224. doi: 10.1017/S0263034611000851
    [31] Antonov O, Efimov S, Yanuka D, et al. Generation of converging strong shock wave formed by microsecond timescale underwater electrical explosion of spherical wire array[J]. Applied Physics Letters, 2013, 102: 124104. doi: 10.1063/1.4798827
    [32] Antonov O, Efimov S, Gurovich V T, et al. Diagnostics of a converging strong shock wave generated by underwater explosion of spherical wire array[J]. Journal of Applied Physics, 2014, 115: 223303. doi: 10.1063/1.4883187
    [33] Bland S N, Krasik Y E, Yanuka D, et al. Generation of highly symmetric, cylindrically convergent shockwaves in water[J]. Physics of Plasmas, 2017, 24: 082702. doi: 10.1063/1.4994328
    [34] Rososhek A, Efimov S, Nitishinski M, et al. Spherical wire arrays electrical explosion in water and glycerol[J]. Physics of Plasmas, 2017, 24: 122705. doi: 10.1063/1.5000037
    [35] Yanuka D, Rososhek A, Bland S N, et al. Uniformity of cylindrical imploding underwater shockwaves at very small radii[J]. Applied Physics Letters, 2017, 111: 214103. doi: 10.1063/1.5005174
    [36] Yanuka D, Theocharous S, Efimov S, et al. Synchrotron based X-ray radiography of convergent shock waves driven by underwater electrical explosion of a cylindrical wire array[J]. Journal of Applied Physics, 2019, 125: 093301. doi: 10.1063/1.5089011
    [37] Qian Dun, Liu Zhigang, Li Liuxia, et al. Enhancement of shock wave generated by underwater electrical wire-array explosion at a fixed energy and mass of wire-array[J]. IEEE Transactions on Plasma Science, 2020, 48(10): 3373-3377. doi: 10.1109/TPS.2019.2963424
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  151
  • HTML全文浏览量:  79
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-23
  • 修回日期:  2024-10-14
  • 录用日期:  2024-10-30
  • 网络出版日期:  2024-10-29
  • 刊出日期:  2025-12-13

目录

    /

    返回文章
    返回