留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

紧凑型X射线光源的共振注入方法

董自强 邵琢瑕 张通 王琳 陆亚林

董自强, 邵琢瑕, 张通, 等. 紧凑型X射线光源的共振注入方法[J]. 强激光与粒子束, 2025, 37: 054004. doi: 10.11884/HPLPB202537.240179
引用本文: 董自强, 邵琢瑕, 张通, 等. 紧凑型X射线光源的共振注入方法[J]. 强激光与粒子束, 2025, 37: 054004. doi: 10.11884/HPLPB202537.240179
Dong Ziqiang, Shao Zhuoxia, Zhang Tong, et al. Resonant injection method for compact X-ray light source[J]. High Power Laser and Particle Beams, 2025, 37: 054004. doi: 10.11884/HPLPB202537.240179
Citation: Dong Ziqiang, Shao Zhuoxia, Zhang Tong, et al. Resonant injection method for compact X-ray light source[J]. High Power Laser and Particle Beams, 2025, 37: 054004. doi: 10.11884/HPLPB202537.240179

紧凑型X射线光源的共振注入方法

doi: 10.11884/HPLPB202537.240179
基金项目: 中国科学院科研仪器设备研制项目(ZDZBGCH2021001)
详细信息
    作者简介:

    董自强,dzq1992@ustc.edu.cn

    通讯作者:

    张 通,tongz@ustc.edu.cn

  • 中图分类号: TN248.6

Resonant injection method for compact X-ray light source

  • 摘要: 针对紧凑型X射线光源的一体化储存环注入系统这一核心问题开展研究。利用三维电磁场仿真软件CST与束流动力学模拟软件ELEGANT,重点对注入系统中的关键元件−扰动器进行多参数优化设计。研究了电子束流在半整数注入过程中的相空间演化规律,优化了注入元件的结构参数,针对紧凑型储存环优化了注入方案,计算结果显示扰动器相对于注入点的最佳摆放位置是150°~210°,电子束流注入位置相对于平衡轨道为30 mm,扰动器停止工作后电子振幅最小可缩小至3.4 mm。最后分析了紧凑型储存环采用多次多圈注入模式实现束流注入的可行性,计算结果显示扰动器工作频率为3 MHz时可获得最大注入效率。
  • 图  1  扰动器开启时半整数共振注入过程示意图

    Figure  1.  Half-integer resonance injection process when perturbator is on

    图  2  扰动器物理模型

    Figure  2.  Perturbator physical model

    图  3  扰动器在径向产生的磁场分布

    Figure  3.  Magnetic field generated by perturbator on radial direction

    图  4  电子在相空间中的运动轨迹

    Figure  4.  Electron trajectory in phase space

    图  5  注入过程中电子的水平方向振荡包络变化

    Figure  5.  Electron horizontal envelope change during injection

    图  6  不同正弦信号频率下扰动器注入效率随电流值的相对变化

    Figure  6.  Relative variation of injection efficiency with current value under different sinusoidal signal frequencies

    图  7  储存环中扰动器相对于注入点的摆放位置

    Figure  7.  Position of the perturbator relative to the injection point in storage ring

    图  8  不同位置处扰动器注入效率随电流的相对变化

    Figure  8.  Relative variation of injection efficiency with current value under different position

    表  1  紧凑型储存环设计参数与注入束流参数

    Table  1.   Compact storage ring design parameters and injection beam parameters

    focusing
    index n
    center orbit magnetic
    field/T
    center orbit
    radius R/m
    beam energy/
    MeV
    beam transverse
    emittance
    revolution
    period/ns
    Twiss
    parameters
    betatron
    tunes
    radiation
    energy/eV
    0.728 0.14445 0.15915 6 εx=5π mm·mrad,
    εy=5π mm·mrad
    3.34 αx=0,
    αy=0,
    βx=0.305 m,
    βy=0.187 m
    γx=3.279 m−1
    γy=5.348 m−1
    Qx=0.5215,
    Qy=0.8532
    0.0007
    下载: 导出CSV
  • [1] 杨福家, 王炎森, 陆福全. 原子核物理[M]. 2版. 上海: 复旦大学出版社, 2002

    Yang Fujia, Wang Yansen, Lu Fuquan. Nuclear physics[M]. 2nd ed. Shanghai: Fudan University Press, 2002
    [2] 刘祖平. 同步辐射光源物理引论[M]. 合肥: 中国科学技术大学出版社, 2009

    Liu Zuping. Introduction to the physics of synchrotron radiation source[M]. Hefei: University of Science and Technology of China Press, 2009
    [3] 何多慧. 合肥国家同步辐射光源[J]. 物理, 1992, 21(5):257-262

    He Duohui. Hefei national synchrotron radiation source[J]. Physics, 1992, 21(5): 257-262
    [4] 李浩虎, 余笑寒, 何建华. 上海光源介绍[J]. 现代物理知识, 2010, 22(3):14-19

    Li Haohu, Yu Xiaohan, He Jianhua. Introduction to Shanghai Synchrotron Radiation Facility[J]. Modern Physics, 2010, 22(3): 14-19
    [5] 北京正负电子对撞机国家实验室办公室. 北京同步辐射装置简介[J]. 核技术, 2002, 25(10):769 doi: 10.3321/j.issn:0253-3219.2002.10.001

    Office of Beijing Electron Positron Collider National Laboratory. Introduction on Beijing Synchrotron Radiation Facility[J]. Nuclear Techniques, 2002, 25(10): 769 doi: 10.3321/j.issn:0253-3219.2002.10.001
    [6] Yamada H, Kitazawa Y, Kanai Y, et al. Development of the hard X-ray source based on a tabletop electron storage ring[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 467/468: 122-125.
    [7] Yamada H. The smallest electron storage ring for high-intensity far-infrared and hard X-ray productions[J]. Journal of Synchrotron Radiation, 1998, 5(6): 1326-1331.
    [8] Hasegawa D, Yamada H, Kleev A I, et al. The portable synchrotron MIRRORCLE-6X[J]. AIP Conference Proceedings, 2004, 716(1): 116-119.
    [9] Yamada H. Novel X-ray source based on a tabletop synchrotron and its unique features[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2003, 199: 509-516. doi: 10.1016/S0168-583X(02)01593-8
    [10] Yamada H. MIRRORCLE-type tabletop/portable SR sources for advanced applications[J]. AIP Conference Proceedings, 2007, 902(1): 11-18.
    [11] Gambaccini M, Marziani M, Taibi A, et al. Characterization of a novel X-ray source: the MIRRORCLE-6X system[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 664(1): 78-83.
    [12] Ogata T, Teshima T, Matsumoto M, et al. The biological effects on cancer cells by synchrotron radiation generated from MIRRORCLE-6X[J]. AIP Conference Proceedings, 2004, 716(1): 73-77.
    [13] 陈佳洱. 加速器物理基础[M]. 北京: 北京大学出版社, 2012

    Chen Jiaer. Fundamentals of accelerator physics[M]. Beijing: Peking University Press, 2012
    [14] Yamada H. Commissioning of aurora: the smallest synchrotron light source[J]. Journal of Vacuum Science & Technology B, 1990, 8(6): 1628-1632.
    [15] Yamada H, SHI Accelerator Research Group. Present status of compact synchrotron light source ''AURORA''[J]. Review of Scientific Instruments, 1989, 60(7): 1786-1788.
    [16] Takayama T. Resonance injection method for the compact superconducting SR-ring[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1987, 24/25: 420-424.
    [17] Hasegawa D, Yamada H, Kleev A I, et al. The tabletop synchrotron MIRRORCLE-6X[C]//Proceedings of the 14th Symposium on Accelerator Science and Technology. 2003: 111.
    [18] Weihreter E. Review of compact synchrotron light sources[C]//Proceedings of the 3rd European Particle Accelerator Conference. 1992: 93.
    [19] 滕建, 曹磊峰, 范伟, 等. 微型轫致辐射X射线光源扰动器设计[J]. 强激光与粒子束, 2012, 24(5):1107-1110 doi: 10.3788/HPLPB20122405.1107

    Teng Jian, Cao Leifeng, Fan Wei, et al. Design of perturbator for mini bremsstrahlung X-ray source[J]. High Power Laser and Particle Beams, 2012, 24(5): 1107-1110 doi: 10.3788/HPLPB20122405.1107
    [20] 戴建枰, 顾小冯. 微型轫致辐射光源磁铁和扰动器设计研究[J]. 高能物理与核物理, 2007, 31(3):316-319 doi: 10.3321/j.issn:0254-3052.2007.03.020

    Dai Jianping, Gu Xiaofeng. Magnet and perturbator design for a mini bremsstrahlung X-ray source[J]. High Energy Physics and Nuclear Physics, 2007, 31(3): 316-319 doi: 10.3321/j.issn:0254-3052.2007.03.020
    [21] Roggen T, Masschaele B, De Gersem H, et al. Modeling a table top storage ring for a compact light source using electromagnetic field simulation tools[C]//Proceedings of the f Linear Accelerator Conference LINAC2010. 2010: 953-955.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  34
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-27
  • 修回日期:  2025-02-27
  • 录用日期:  2025-02-27
  • 网络出版日期:  2025-03-29
  • 刊出日期:  2025-03-31

目录

    /

    返回文章
    返回