留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重频光导开关绝缘冷却液的免气泡精确温控系统

肖金水 黄宇鹏 栾崇彪 李洪涛 袁建强 马勋

肖金水, 黄宇鹏, 栾崇彪, 等. 重频光导开关绝缘冷却液的免气泡精确温控系统[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240186
引用本文: 肖金水, 黄宇鹏, 栾崇彪, 等. 重频光导开关绝缘冷却液的免气泡精确温控系统[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240186
Xiao Jinshui, Huang Yupeng, Luan Chongbiao, et al. Bubble-free and precise temperature control system of insulating coolant for photoconductive switch with repetition frequency[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240186
Citation: Xiao Jinshui, Huang Yupeng, Luan Chongbiao, et al. Bubble-free and precise temperature control system of insulating coolant for photoconductive switch with repetition frequency[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240186

重频光导开关绝缘冷却液的免气泡精确温控系统

doi: 10.11884/HPLPB202537.240186
详细信息
    作者简介:

    肖金水,jinshui_xiao@126.com

    通讯作者:

    黄宇鹏,huang150408@qq.com

  • 中图分类号: TM833

Bubble-free and precise temperature control system of insulating coolant for photoconductive switch with repetition frequency

  • 摘要: 光导开关连续工作在长脉宽、高重频工况时,由于存在一定的导通电阻,开关内部热沉积现象较严重,容易导致光导开关的热损伤和热击穿,严重影响光导开关的使用寿命。因此必须对高功率光导开关进行有效散热。常规冷却循环系统采用循环泵泵出方式对物体进行冷却,存在冷却介质在循环过程中压力过高或过低的问题,使物体冷却不均匀,极易导致物体损坏;此外,循环泵的桨叶循环过程中会产生气泡,使光导开关绝缘强度下降,导致沿面闪络击穿。针对此问题,研制了一套基于负压吸引机制消除气泡、双回路系统实现精确控温的冷却系统,实现了光导开关的良好散热,实现了光导开关在工作电压11 kV、输出电流560 A、脉宽55 ns、重复频率1 kHz条件下寿命达到106次,大幅度提高了光导开关寿命。
  • 图  1  精确控温冷却系统示意图

    Figure  1.  Schematic diagram of precise temperature control cooling system

    图  2  精确控温冷却系统实物装置

    Figure  2.  Accurate temperature control cooling system

    图  3  GaAs PCSS在直流电压15 kV条件下的焦耳热分布图

    Figure  3.  Distributing of joule for GaAs PCSS with voltage of 15 kV

    图  4  GaAs PCSS在空气和电子氟化液中电场分布图

    Figure  4.  Distributing of electric field of GaAs PCSS under air (a) and fluorinert electronic liquid (b)

    图  5  单个PCSS散热装置示意图

    Figure  5.  Schematic diagram of cooling device for a PCSS

    图  6  GaAs PCSS置于循环冷却的电子氟化液中的热场(a)及液流出口温度分布图(b)

    Figure  6.  Distributing of temperature for GaAs PCSS under precise temperature control cooling system with fluorinert electronic liquid (a) and export (b)

    图  7  光导开关测试电路图

    Figure  7.  Circuit diagram for photoconductive switches measurement

    图  8  光导开关1 kHz重频输出电压和电流波形

    Figure  8.  Output voltage and current waveforms of photoconductive switches under 1 kHz repetition frequency

    表  1  不同流量和温度下光导开关寿命结果对比

    Table  1.   Comparison of life for the photoconductive switches at different flow rates and temperature

    temperature (℃) flow rate (L/h) life of PCCS (shock number)
    6.6 80 5×103
    2.0 70 6×104
    −2.9 65.4 1.8×105
    −7.0 61.2 3×105
    −11.5 55.3 3×105
    110 1×106
    −16.1 49.1 5×103
    下载: 导出CSV
  • [1] Mazzola M S, Schoenbach K H, Lakdawala V K, et al. GaAs photoconductive closing switches with high dark resistance and microsecond conductivity decay[J]. Applied Physics Letters, 1989, 54(8): 742-744. doi: 10.1063/1.100879
    [2] Zutavern F J, Loubriel G M, O’Malley M W, et al. Photoconductive semiconductor switch experiments for pulsed power applications[J]. IEEE Transactions on Electron Devices, 1990, 37(12): 2472-2477. doi: 10.1109/16.64520
    [3] Yang Yingxiang, Hu Long, Yang Xianghong, et al. Reduced dark-Current, rise-time, and on-state delay of avalanche GaAs photoconductive semiconductor switches by annealing-grinding process[J]. IEEE Electron Device Letters, 2025, 46(3): 373-376. doi: 10.1109/LED.2025.3527980
    [4] Fu Jiabin, He Yang, Liu Hongwei, et al. Integral, long lifetime, laser diode triggered Gas switch based on light initiated multigate switch[J]. IEEE Transactions on Plasma Science, 2024, 52(5): 1734-1738. doi: 10.1109/TPS.2024.3406573
    [5] Luan Chongbiao, Zhao Juan, Li Hongtao, et al. Optical testing method analysis of carrier transport in GaAs PCSS[J]. Vacuum, 2020, 182: 109771. doi: 10.1016/j.vacuum.2020.109771
    [6] Luan Chongbiao, Li Hongtao. Influence of hot-carriers on the on-state resistance in Si and GaAs photoconductive semiconductor switches working at long pulse width[J]. Chinese Physics Letters, 2020, 37: 044203. doi: 10.1088/0256-307X/37/4/044203
    [7] 袁建强, 谢卫平, 周良骥, 等. 光导开关研究进展及其在脉冲功率技术中的应用[J]. 强激光与粒子束, 2008, 20(1):171-176

    Yuan Jianqiang, Xie Weiping, Zhou Liangji, et al. Developments and applications of photoconductive semiconductor switches in pulsed power technology[J]. High Power Laser and Particle Beams, 2008, 20(1): 171-176
    [8] Loubriel G M, O’Malley M W, Zutavern F J. Toward pulsed power uses for photoconductive semiconductor switches: closing switches[C]//Proceedings of the 6th Institute of Electrical and Electronic Engineers Pulsed Power Conference. 1987: 145-148.
    [9] Luan Chongbiao, Feng Yuanwei, Huang Yupeng, et al. Research on a novel high-power semi-insulating GaAs photoconductive semiconductor switch[J]. IEEE Transactions on Plasma Science, 2016, 44(5): 839-841. doi: 10.1109/TPS.2016.2540161
    [10] Luan Chongbiao, Wang Bo, Huang Yupeng, et al. Study on the high-power semi-insulating GaAs PCSS with quantum well structure[J]. AIP Advances, 2016, 6: 055216. doi: 10.1063/1.4952595
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  13
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-03
  • 修回日期:  2025-03-19
  • 录用日期:  2024-09-15
  • 网络出版日期:  2025-04-16

目录

    /

    返回文章
    返回