留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于丝网传感器的棒束通道两相流实验研究

隆鹏陈 史昊鹏 赵萌 程以炫

隆鹏陈, 史昊鹏, 赵萌, 等. 基于丝网传感器的棒束通道两相流实验研究[J]. 强激光与粒子束, 2025, 37: 016002. doi: 10.11884/HPLPB202537.240192
引用本文: 隆鹏陈, 史昊鹏, 赵萌, 等. 基于丝网传感器的棒束通道两相流实验研究[J]. 强激光与粒子束, 2025, 37: 016002. doi: 10.11884/HPLPB202537.240192
Long Pengchen, Shi Haopeng, Zhao Meng, et al. Experimental study on two-phase flow in rod bundle channels based on wire mesh sensor[J]. High Power Laser and Particle Beams, 2025, 37: 016002. doi: 10.11884/HPLPB202537.240192
Citation: Long Pengchen, Shi Haopeng, Zhao Meng, et al. Experimental study on two-phase flow in rod bundle channels based on wire mesh sensor[J]. High Power Laser and Particle Beams, 2025, 37: 016002. doi: 10.11884/HPLPB202537.240192

基于丝网传感器的棒束通道两相流实验研究

doi: 10.11884/HPLPB202537.240192
基金项目: 国家自然科学基金项目(U21B2059)
详细信息
    作者简介:

    隆鹏陈,longpengchen@sjtu.edu.cn

    通讯作者:

    赵 萌,zhaomeng@sjtu.edu.cn

  • 中图分类号: TL334

Experimental study on two-phase flow in rod bundle channels based on wire mesh sensor

  • 摘要: 为研究压水堆棒束通道内气液两相流型特性及演变规律,基于双层丝网传感器(WMS)在常温常压下开展了3×3棒束通道内的空气-水两相流型测量实验,流型包含泡状流、泡-帽状流和弹状流。结果表明:常温常压下横向升力方向发生反转的临界气泡直径范围为4~5.8 mm。此外,对于泡状流,气相表观速度较低时,空泡份额呈现“壁峰”分布;气相表观速度较高时,呈现“中心峰”分布。对于泡-帽状流,相邻子通道内,帽状气泡交叉分布,并引发液相在相邻子通道间的大尺度交混,空泡份额呈现“中心峰”分布。对于弹状流,大尺寸气泡沿轴向发展会跨越子通道间隙并聚合为弹状气泡,空泡份额“中心峰”分布更为明显。将实验数据用以评价部分漂移流模型,其中Bestion漂移流模型因高估漂移速度,导致空泡份额预测结果偏小;Ozaki漂移流模型对空泡份额预测较为精准,其平均相对误差为9.8%。
  • 图  1  空气-水两相流实验回路示意图

    Figure  1.  Air-water two-phase flow experimental loop

    图  2  丝网传感器模块结构示意图

    Figure  2.  Wire mesh sensor structure

    图  3  气泡识别算法示意图

    Figure  3.  Schematic diagram of bubble recognition algorithm

    图  4  WMS与气体质量流量计表观气速测量结果比较

    Figure  4.  Comparison of superficial gas velocity between WMS and gas mass flowmeter

    图  5  侧视投影和流型划分

    Figure  5.  Side view projection and flow pattern classification

    图  6  分群后空泡份额分布(Z/D=88.7)

    Figure  6.  Distribution of void fraction after grouping at Z/D=88.7

    图  7  气泡尺寸分布

    Figure  7.  Bubble size distribution at Z/D=88.7

    图  8  空泡份额分布与流型侧视图(Z/D=88.7)

    Figure  8.  Void fraction distribution and side view of flow pattern at Z/D=88.7

    图  9  预测值与实验值比较

    Figure  9.  Comparison and relative error between predicted and experimental values

    表  1  典型工况参数

    Table  1.   Typical operating condition parameters

    No. superficial liquid velocity/(m·s−1) superficial gas velocity/(m·s−1) void fraction
    1 1.34 0.023 0.015
    2 1.34 0.138 0.104
    3 1.34 0.207 0.143
    4 1.34 0.277 0.170
    5 1.34 0.322 0.187
    6 1.34 0.414 0.210
    7 1.34 0.737 0.264
    下载: 导出CSV
  • [1] 于平安, 朱瑞安, 喻真烷, 等. 核反应堆热工分析[M]. 上海: 上海交通大学出版社, 2002

    Yu Ping’an, Zhu Ruian, Yu Zhenwan, et al. Thermal analysis of nuclear reactors[M]. Shanghai: Shanghai Jiaotong University Press, 2002
    [2] Åbro E, Johansen G A. Improved void fraction determination by means of multibeam gamma-ray attenuation measurements[J]. Flow Measurement and Instrumentation, 1999, 10(2): 99-108. doi: 10.1016/S0955-5986(98)00043-0
    [3] Rahim R A, Rahiman M H F, Chan K S, et al. Non-invasive imaging of liquid/gas flow using ultrasonic transmission-mode tomography[J]. Sensors and Actuators A: Physical, 2007, 135(2): 337-345. doi: 10.1016/j.sna.2006.07.031
    [4] Yun B J, Park G C, Julia J E, et al. Flow structure of subcooled boiling water flow in a subchannel of 3×3 rod bundles[J]. Journal of Nuclear Science and Technology, 2008, 45(5): 402-422. doi: 10.1080/18811248.2008.9711450
    [5] Hosokawa S, Hayashi K, Tomiyama A. Void distribution and bubble motion in bubbly flows in a 4×4 rod bundle. Part I: experiments[J]. Journal of Nuclear Science and Technology, 2014, 51(2): 220-230. doi: 10.1080/00223131.2013.862189
    [6] Ren Quanyao, Pan Liangming, Zhou Wenxiong, et al. Phase distribution characteristics of bubbly flow in 5×5 vertical rod bundles with mixing vane spacer grids[J]. Experimental Thermal and Fluid Science, 2018, 96: 451-459. doi: 10.1016/j.expthermflusci.2018.04.002
    [7] Yang X, Schlegel J P, Liu Y, et al. Experimental study of interfacial area transport in air–water two phase flow in a scaled 8×8 BWR rod bundle[J]. International Journal of Multiphase Flow, 2013, 50: 16-32. doi: 10.1016/j.ijmultiphaseflow.2012.10.006
    [8] Shen Xiuzhong, Miwa S, Xiao Yigeng, et al. Local measurements of upward air-water two-phase flows in a vertical 6×6 rod bundle[J]. Experimental and Computational Multiphase Flow, 2019, 1(3): 186-200. doi: 10.1007/s42757-019-0031-0
    [9] Han Xu, Shen Xiuzhong, Yamamoto T, et al. Experimental study on local interfacial parameters in upward air-water bubbly flow in a vertical 6×6 rod bundle[J]. International Journal of Heat and Mass Transfer, 2019, 144: 118696. doi: 10.1016/j.ijheatmasstransfer.2019.118696
    [10] Prasser H M, Böttger A, Zschau J. A new electrode-mesh tomograph for gas–liquid flows[J]. Flow Measurement and Instrumentation, 1998, 9(2): 111-119. doi: 10.1016/S0955-5986(98)00015-6
    [11] Ylönen A T. High-resolution flow structure measurements in a rod bundle[D]. Lappeenranta: Lappeenranta University of Technology, 2013.
    [12] Xiong Jinbiao, Xie Hao, Du Sijia, et al. Experimental measurement of bubbly two-phase flow in a 4x4 rod bundle with wire mesh sensor[J]. Applied Thermal Engineering, 2023, 218: 119294. doi: 10.1016/j.applthermaleng.2022.119294
    [13] 王颖龙, 谢浩, 熊进标, 等. 基于丝网传感器的5×5棒束通道空泡分布测量研究[J]. 核动力工程, 2022, 43(1):84-91

    Wang Yinglong, Xie Hao, Xiong Jinbiao, et al. Research on void distribution measurement of 5×5 rod bundle channel based on wire mesh sensor[J]. Nuclear Power Engineering, 2022, 43(1): 84-91
    [14] Tomiyama A, Tamai H, Zun I, et al. Transverse migration of single bubbles in simple shear flows[J]. Chemical Engineering Science, 2002, 57(11): 1849-1858. doi: 10.1016/S0009-2509(02)00085-4
    [15] Zhang Hengwei, Xiao Yao, Gu Hanyang. Experimental investigation of two-phase flow evolution in a tight lattice bundle using wire-mesh sensor[J]. International Journal of Heat and Mass Transfer, 2021, 171: 121079. doi: 10.1016/j.ijheatmasstransfer.2021.121079
    [16] Yan Xu, Xiao Yao, Zhang Hengwei, et al. Experimental investigation of gas-phase migration behaviors in a tight lattice bundle under two-phase non-equilibrium flow[J]. Chemical Engineering Science, 2023, 282: 119315. doi: 10.1016/j.ces.2023.119315
    [17] Prasser H M. Evolution of interfacial area concentration in a vertical air–water flow measured by wire–mesh sensors[J]. Nuclear Engineering and Design, 2007, 237(15/17): 1608-1617.
    [18] Zuber N, Findlay J A. Average volumetric concentration in two-phase flow systems[J]. Journal of Heat Transfer, 1965, 87(4): 453-468. doi: 10.1115/1.3689137
    [19] Bestion D. The physical closure laws in the CATHARE code[J]. Nuclear Engineering and Design, 1990, 124(3): 229-245. doi: 10.1016/0029-5493(90)90294-8
    [20] Ozaki T, Suzuki R, Mashiko H, et al. Development of drift-flux model based on 8×8 BWR rod bundle geometry experiments under prototypic temperature and pressure conditions[J]. Journal of Nuclear Science and Technology, 2013, 50(6): 563-580. doi: 10.1080/00223131.2013.785277
    [21] Han Xu, Shen Xiuzhong, Yamamoto T, et al. Flow regime and void fraction predictions in vertical rod bundle flow channels[J]. International Journal of Heat and Mass Transfer, 2021, 178: 121637. doi: 10.1016/j.ijheatmasstransfer.2021.121637
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  159
  • HTML全文浏览量:  49
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-07
  • 修回日期:  2024-12-04
  • 录用日期:  2024-12-04
  • 网络出版日期:  2024-12-14
  • 刊出日期:  2025-12-13

目录

    /

    返回文章
    返回