留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于3DE平台的协同设计在加速器装置建设中的应用

牛海华 王锋锋 王志军 刘鲁北 陈伟龙 李亚光 孙国珍 郑海 李智慧 张斌 何源

牛海华, 王锋锋, 王志军, 等. 基于3DE平台的协同设计在加速器装置建设中的应用[J]. 强激光与粒子束, 2025, 37: 014001. doi: 10.11884/HPLPB202537.240210
引用本文: 牛海华, 王锋锋, 王志军, 等. 基于3DE平台的协同设计在加速器装置建设中的应用[J]. 强激光与粒子束, 2025, 37: 014001. doi: 10.11884/HPLPB202537.240210
Niu Haihua, Wang Fengfeng, Wang Zhijun, et al. Application of collaborative design based on 3DE platform in the construction of an accelerator facility[J]. High Power Laser and Particle Beams, 2025, 37: 014001. doi: 10.11884/HPLPB202537.240210
Citation: Niu Haihua, Wang Fengfeng, Wang Zhijun, et al. Application of collaborative design based on 3DE platform in the construction of an accelerator facility[J]. High Power Laser and Particle Beams, 2025, 37: 014001. doi: 10.11884/HPLPB202537.240210

基于3DE平台的协同设计在加速器装置建设中的应用以CS30 α辐照装置为例

doi: 10.11884/HPLPB202537.240210
基金项目: 国家自然科学基金青年科学基金项目(12305169);中国科学院青年创新促进会项目(2023437)
详细信息
    作者简介:

    牛海华,niuhh@impcas.ac.cn

    通讯作者:

    何 源,hey@impcas.ac.cn

  • 中图分类号: TH12;TP311;TL5

Application of collaborative design based on 3DE platform in the construction of an accelerator facilitytake CS30 α irradiation device as an example

  • 摘要: 为了提升加速器装置的设计效率和建设质量,解决现有加速器装置设计和建设过程中存在的多学科数据孤岛、各系统数据实时交互性差与一致性弱、设计周期长且成本高等问题,立足于加速器装置建设需求,提出基于3DEXPERIENCE (简称 3DE) 平台对CS30加速器α辐照装置开展协同设计研究,梳理出一套较为完善的加速器装置协同设计流程,实现了加速器装置机械、管路、电气及土建等各系统多维度协同设计,规范了整个设计流程,减少了设计错误,提高了设计效率及质量,节约了设计成本,为加速器装置的设计及建设提供指导和帮助,有效缩短了加速器装置的建设周期。
  • 图  1  加速器协同设计流程图

    Figure  1.  Accelerator collaborative design schematic

    图  2  总体设计骨架元素搭建

    Figure  2.  Build the skeletal elements of the overall design

    图  3  机械系统骨架元素发布

    Figure  3.  Release the skeletal elements of mechanical systems

    图  4  机械子系统三维模型图

    Figure  4.  3D diagram of mechanical subsystems

    图  5  机械协同设计三维模型图

    Figure  5.  3D diagram of mechanical collaborative design

    图  6  磁铁水电接口的定义及发布

    Figure  6.  Definition and release of the water and electrical interfaces for magnets

    图  7  管路协同设计三维模型图

    Figure  7.  3D diagram of pipeline collaborative design

    图  8  管路三维尺寸标注

    Figure  8.  Annotation of 3D drawing for pipelines

    图  9  电气系统协同设计三维模型图

    Figure  9.  3D diagram of electrical system collaborative design

    图  10  土建改造协同设计图

    Figure  10.  Collaborative design schematic of civil renovation

    图  11  管路安装及线缆敷设现场图

    Figure  11.  Pipelines’ installation and cable laying site images

  • [1] 工业和信息化部, 国家发展和改革委员会, 教育部, 等. “十四五”智能制造发展规划[EB/OL]. Ministry of Industry and Information Technology of the People’s Republic of China, National Development and Reform Commission, Ministry of Education of the People’s Republic of China, et al. 14th Five-Year Development Plan on Smart Manufacturing

    2022-07-06)[2022-09-01]. https://wap.miit.gov.cn/jgsj/ghs/zlygh/art/2022/art_c201cab037444d5c94921a53614332f9.html.
    [2] 新华社. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[EB/OL]. Xinhua News Agency. Outline of the 14th Five-Year Plan for Economic and Social Development (2021–2025) and Long-Range Objectives through the Year 2035 of the People’s Republic of China

    2021-03-13)[2021-09-01]. http://www.gov.cn/xinwen/2021-03/13/content_5592681.htm.
    [3] 娄山河, 冯毅雄, 胡炳涛, 等. 人机认知协同的复杂装备概念设计: 挑战、进展和展望[J]. 机械工程学报, 2024, 60(11):2-9

    Lou Shanhe, Feng Yixiong, Hu Bingtao, et al. Human-computer cognitive collaboration-driven conceptual design of complex equipment: research progress and challenges[J]. Journal of Mechanical Engineering, 2024, 60(11): 2-9
    [4] 任磊, 贾子翟, 赖李媛君, 等. 数据驱动的工业智能: 现状与展望[J]. 计算机集成制造系统, 2022, 28(7):1913-1939

    Ren Lei, Jia Zidi, Lai Liyuanjun, et al. Data-driven industrial intelligence: current status and future directions[J]. Computer Integrated Manufacturing Systems, 2022, 28(7): 1913-1939
    [5] 李琳利, 李浩, 顾复, 等. 基于数字孪生的复杂机械产品多学科协同设计建模技术[J]. 计算机集成制造系统, 2019, 25(6):1307-1319

    Li Linli, Li Hao, Gu Fu, et al. Multidisciplinary collaborative design modeling technologies for complex mechanical products based on digital twin[J]. Computer Integrated Manufacturing Systems, 2019, 25(6): 1307-1319
    [6] 李浩, 王昊琪, 程颖, 等. 数据驱动的复杂产品智能服务技术与应用[J]. 中国机械工程, 2020, 31(7):757-772

    Li Hao, Wang Haoqi, Cheng Ying, et al. Technology and application of data-driven intelligent services for complex products[J]. China Mechanical Engineering, 2020, 31(7): 757-772
    [7] 贺东京, 宋晓, 王琪, 等. 基于云服务的复杂产品协同设计方法[J]. 计算机集成制造系统, 2011, 17(3):533-539

    He Dongjing, Song Xiao, Wang Qi, et al. Method for complex product collaborative design based on cloud service[J]. Computer Integrated Manufacturing Systems, 2011, 17(3): 533-539
    [8] Yvette T. 达索系统引领“体验时代中的制造业”[J]. 设计, 2016(24):148-149

    Yvette T. Manufacturing in the age of experience[J]. Design, 2016(24): 148-149
    [9] 卢智滔, 吴丽君, 武燕华. 基于3DEXPERIENCE平台的核电精益研发平台的研究[J]. 长江信息通信, 2021, 34(1):89-91

    Lu Zhitao, Wu Lijun, Wu Yanhua. The solution of nuclear power lean research platform based On 3DEXPERIENCE platform[J]. Changjiang Information & Communications, 2021, 34(1): 89-91
    [10] 刘红冬, 阳露, 裴曦, 等. 几种不同材料降能器对200 MeV质子放疗特性的蒙特卡罗模拟[J]. 原子核物理评论, 2018, 35(1):78-84

    Liu Hongdong, Yang Lu, Pei Xi, et al. Monte Carlo study on the performance of 200 MeV proton therapy energy degraders made of different materials[J]. Nuclear Physics Review, 2018, 35(1): 78-84
    [11] 陈伟, 万鑫淼, 李智慧. 不同薄膜材料对α束流性能影响的模拟研究[J]. 原子核物理评论, 2021, 38(2):147-152

    Chen Wei, Wan Xinmiao, Li Zhihui. Simulation study about the effects of different film materials on α beam properties[J]. Nuclear Physics Review, 2021, 38(2): 147-152
    [12] 李敏, 李维龙, 康新才, 等. 医用重离子回旋加速器径向探针系统(英文)[J]. 强激光与粒子束, 2023, 35:104004 doi: 10.11884/HPLPB202335.220311

    Li Min, Li Weilong, Kang Xincai, et al. Radial probe detector system in the cyclotron of Heavy Ion Medical Machine[J]. High Power Laser and Particle Beams, 2023, 35: 104004 doi: 10.11884/HPLPB202335.220311
    [13] 游尧尧, 李敏, 毛瑞士, 等. 用于重离子治癌回旋引出的实时流强测量系统[J]. 强激光与粒子束, 2022, 34:114001 doi: 10.11884/HPLPB202234.220064

    You Yaoyao, Li Min, Mao Ruishi, et al. Real-time beam intensity measurement system for extraction section of cyclotron in Heavy Ion Medical Machine[J]. High Power Laser and Particle Beams, 2022, 34: 114001 doi: 10.11884/HPLPB202234.220064
    [14] 关镭镭, 李明, 崔涛, 等. 小型回旋加速器全自动化磁场测量和精密垫补平台研制[J]. 强激光与粒子束, 2022, 34:084003 doi: 10.11884/HPLPB202234.210514

    Guan Leilei, Li Ming, Cui Tao, et al. Development of a fully automated magnetic field measurement and shimming platform for small cyclotrons[J]. High Power Laser and Particle Beams, 2022, 34: 084003 doi: 10.11884/HPLPB202234.210514
    [15] 陈启明, 郭刚, 韩金华, 等. 中能质子单粒子效应试验束流分布及次级中子模拟[J]. 核技术, 2021, 44:100502

    Chen Qiming, Guo Gang, Han Jinhua, et al. Simulation study of beam distribution and secondary neutron for intermediate energy proton single event effect test[J]. Nuclear Techniques, 2021, 44: 100502
  • 加载中
图(11)
计量
  • 文章访问数:  172
  • HTML全文浏览量:  71
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-25
  • 修回日期:  2024-12-17
  • 录用日期:  2024-12-17
  • 网络出版日期:  2024-12-24
  • 刊出日期:  2025-12-13

目录

    /

    返回文章
    返回