留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大型靶目标粒子辐照蒙特卡罗计算后处理方法研究

胡友涛 范杰清 赵强 王浩洋 张芳 张硕 崔雅萍 郝建红 董志伟

胡友涛, 范杰清, 赵强, 等. 大型靶目标粒子辐照蒙特卡罗计算后处理方法研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240211
引用本文: 胡友涛, 范杰清, 赵强, 等. 大型靶目标粒子辐照蒙特卡罗计算后处理方法研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240211
Hu Youtao, Fan Jieqing, Zhao Qiang, et al. Research on post-processing methods for particle radiation Monte Carlo calculations of large-scale target objects[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240211
Citation: Hu Youtao, Fan Jieqing, Zhao Qiang, et al. Research on post-processing methods for particle radiation Monte Carlo calculations of large-scale target objects[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240211

大型靶目标粒子辐照蒙特卡罗计算后处理方法研究

doi: 10.11884/HPLPB202537.240211
详细信息
    作者简介:

    胡友涛,2461968203@qq.com

    通讯作者:

    赵 强,zhaoq@iapcm.ac.cn

  • 中图分类号: TP311

Research on post-processing methods for particle radiation Monte Carlo calculations of large-scale target objects

  • 摘要: 蒙特卡罗(Monte Carlo,MC)方法是辐照损伤、辐照屏蔽研究中应用最广泛的方法之一。在对机场、铁路、舰船等大型靶目标开展辐照损伤研究时,通常关注靶目标的3D建模及辐照计算,而对计算后的数据分析多采用人工方式,工作难度大、效率低,成为制约相关研究的技术瓶颈。开展靶目标粒子辐照MC计算可视化后处理方法研究,建立了基于KD树(k-dimensional tree,简称KDtree)+反距离加权(inverse distance weight,IDW)和基于遗传算法优化反向传播(genetic algorithm based backpropagation,GABP)神经网络的后处理模型,实现了数据与模型结合的可视化分析。与传统数据分析方法相比,提出的方法能够大幅减低研究人员工作难度,提升数据处理速度,实现辐照效应直观展示,提升辐照效应研究后处理工作效率。
  • 图  1  MC模型代码可视化截面图

    Figure  1.  Visualization of cross-sectional diagrams for MC model code

    图  2  中子球源及网格计数区域示意图

    Figure  2.  Schematic diagram of neutron source and grid counting area

    图  3  基于KD树+IDW的MC计算后处理模型

    Figure  3.  Post-processing model for MC calculation based on KDtree+IDW

    图  4  三层BP神经网络结构

    Figure  4.  Three-layer backpropagation neural network structure

    图  5  基于GABP神经网络的MC计算后处理模型

    Figure  5.  Post-processing model for MC calculation based on GABP neural network

    图  6  后处理模型预测数据与原始数据对比

    Figure  6.  Comparison of post-processed model prediction data with original data

    图  7  后处理模型时间效率比较

    Figure  7.  Comparison of time efficiency of post-processing models

    图  8  基于MC网格计数中子通量空间分布

    Figure  8.  Spatial distribution of neutron flux counting based on MC grid

    图  9  不同模型预测可视化结果

    Figure  9.  Visualization results of different models’ prediction

    表  1  模型性能评估

    Table  1.   Model performance evaluation

    model R2 MSE RMSE MAE
    location 1KDtree+IDW model0.997 10.000 390.019 660.109 22
    BP model0.995 80.000 920.030 330.144 33
    GABP model0.995 50.000 920.030 430.125 97
    location 2KDtree+IDW model0.999 00.000 140.011 730.088 28
    BP model0.998 30.000 510.022 590.131 06
    GABP model0.998 50.000 430.020 870.127 51
    下载: 导出CSV
  • [1] 梁金刚, 王侃, 蔡云, 等. 中子输运蒙特卡罗模拟的区域分解方法研究[J]. 原子能科学技术, 2014, 48(12):2315-2320 doi: 10.7538/yzk.2014.48.12.2315

    Liang Jingang, Wang Kan, Cai Yun, et al. Study on domain decomposition method for Monte Carlo simulation of neutron transport[J]. Atomic Energy Science and Technology, 2014, 48(12): 2315-2320 doi: 10.7538/yzk.2014.48.12.2315
    [2] Heranudin, Smith M L, Van Wyngaardt W M, et al. Characterisation of a well-type NaI(Tl) detector by means of a Monte Carlo simulation for radionuclide metrology application[J]. Applied Radiation and Isotopes, 2021, 176: 109889. doi: 10.1016/j.apradiso.2021.109889
    [3] 马锐垚, 王鑫, 李树, 等. 基于神经网络的粒子输运问题高效计算方法[J]. 物理学报, 2024, 73:072802 doi: 10.7498/aps.73.20231661

    Ma Ruiyao, Wang Xin, Li Shu, et al. An efficient calculation method for particle transport problems based on neural network[J]. Acta Physica Sinica, 2024, 73: 072802 doi: 10.7498/aps.73.20231661
    [4] 李静文, 孙国民, 周文, 等. 蒙特卡罗仿真计算前处理平台的开发与初步验证[J]. 核安全, 2023, 22(1):81-88 doi: 10.3969/j.issn.1672-5360.2023.1.haq202301014

    Li Jingwen, Sun Guomin, Zhou Wen, et al. Development and preliminary verification of Monte Carlo pre-processing platform[J]. Nuclear Safety, 2023, 22(1): 81-88 doi: 10.3969/j.issn.1672-5360.2023.1.haq202301014
    [5] Harb M, Leichtle D, Fischer U. A novel algorithm for CAD to CSG conversion in McCAD[J]. Journal of Nuclear Engineering, 2023, 4(2): 436-447. doi: 10.3390/jne4020031
    [6] 陈念年, 蔡勇, 张建生, 等. MCNP输出数据分析与可视化软件的设计与实现[J]. 计算机工程与应用, 2010, 46(8):208-210,231 doi: 10.3778/j.issn.1002-8331.2010.08.060

    Chen Niannian, Cai Yong, Zhang Jiansheng, et al. Design and realization of MCNP output data analysis and visualization software[J]. Computer Engineering and Applications, 2010, 46(8): 208-210,231 doi: 10.3778/j.issn.1002-8331.2010.08.060
    [7] 范佳锦, 王义, 程建平, 等. MCNP4B程序可视化运行平台开发[J]. 核电子学与探测技术, 2002, 22(1):52-55 doi: 10.3969/j.issn.0258-0934.2002.01.015

    Fan Jiajin, Wang Yi, Cheng Jianping, et al. Development of visual platform of MCNP4B[J]. Nuclear Electronics & Detection Technology, 2002, 22(1): 52-55 doi: 10.3969/j.issn.0258-0934.2002.01.015
    [8] 黄燕, 唐登攀, 陈法新. MCNP输入、输出接口的设计[J]. 电子测量与仪器学报, 2007, 21(1):102-106

    Huang Yan, Tang Dengpan, Chen Faxin. MCNP input / output interface[J]. Journal of Electronic Measurement and Instrument, 2007, 21(1): 102-106
    [9] Huang Yongheng, Kim J, Moreira R G, et al. A web-based information system for MCNP simulation of irradiation of complex shaped foods[J]. Applied Engineering in Agriculture, 2008, 24(2): 233-242.
    [10] 蓝岭. “尼米兹”级航母抗毁伤能力深化研究[J]. 鱼雷技术, 2002, 10(3):8-13

    Lan Ling. The deepened research in the anti-damaged capability of the Nimitz class aircraft carrier[J]. Torpedo Technology, 2002, 10(3): 8-13
    [11] 徐峰, 周心桃, 李德聪, 等. 国外典型航母目标特性探析[J]. 舰船科学技术, 2018, 40(17):151-157 doi: 10.3404/j.issn.1672-7649.2018.09.030

    Xu Feng, Zhou Xintao, Li Decong, et al. Analysis of the target characteristics of foreign typical aircraft carrier[J]. Ship Science and Technology, 2018, 40(17): 151-157 doi: 10.3404/j.issn.1672-7649.2018.09.030
    [12] Lu Lei, Qiu Yuefeng, Fischer U. Improved solid decomposition algorithms for the CAD-to-MC conversion tool McCad[J]. Fusion Engineering and Design, 2017, 124: 1269-1272. doi: 10.1016/j.fusengdes.2017.02.040
    [13] Lu L, Fischer U, Pereslavtsev P. Improved algorithms and advanced features of the CAD to MC conversion tool McCad[J]. Fusion Engineering and Design, 2014, 89(9/10): 1885-1888.
    [14] Moro F, Fischer U, Lu Lei, et al. The McCad code for the automatic generation of MCNP 3-D models: applications in fusion neutronics[J]. IEEE Transactions on Plasma Science, 2014, 42(4): 1036-1041. doi: 10.1109/TPS.2014.2308957
    [15] 康美泽, 马英华. 美国航母结构用钢情况分析[J]. 船舶标准化与质量, 2016(1):46-48,54

    Kang Meize, Ma Yinghua. Analysis of steel used in the structure of American aircraft carriers[J]. Shipbuilding Standardization & Quality, 2016(1): 46-48,54
    [16] Abella V, Miró R, Juste B, et al. 3D dose distribution calculation in a voxelized human phantom by means of Monte Carlo method[J]. Applied Radiation and Isotopes, 2010, 68(4/5): 709-713.
    [17] Zhang Shichao, Li Xuelong, Zong Ming, et al. Learning k for kNN classification[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2017, 8: 43.
    [18] 夏军勇, 高睿杰, 钟飞. 基于KDTree改进的Super-4PCS+ICP算法在点云配准中的应用研究[J]. 激光与红外, 2023, 53(9):1333-1338 doi: 10.3969/j.issn.1001-5078.2023.09.005

    Xia Junyong, Gao Ruijie, Zhong Fei. Study on the application of Super-4 PCS+ICP algorithm based on KDTree improvement in point cloud alignment[J]. Laser & Infrared, 2023, 53(9): 1333-1338 doi: 10.3969/j.issn.1001-5078.2023.09.005
    [19] Chen C S, Karageorghis A. Local RBF algorithms for elliptic boundary value problems in annular domains[J]. Communications in Computational Physics, 2019, 25(1): 41-67. doi: 10.4208/cicp.OA-2018-0031
    [20] 廖丽琼, 白俊松, 罗德安. 基于八叉树及KD树的混合型点云数据存储结构[J]. 计算机系统应用, 2012, 21(3):87-90 doi: 10.3969/j.issn.1003-3254.2012.03.020

    Liao Liqiong, Bai Junsong, Luo Dean. Integrated point cloud storage structure based on octree and KDTree[J]. Computer Systems & Applications, 2012, 21(3): 87-90 doi: 10.3969/j.issn.1003-3254.2012.03.020
    [21] 范晶晶, 王力, 褚文博, 等. 基于KDTree树和欧式聚类的越野环境下行人识别的研究[J]. 汽车工程, 2019, 41(12):1410-1415

    Fan Jingjing, Wang Li, Chu Wenbo, et al. Research on pedestrian recognition in cross-country environment based on KDTree and Euclidean clustering[J]. Automotive Engineering, 2019, 41(12): 1410-1415
    [22] 蒋厚伟, 陈宗玉, 刘德亮, 等. 基于声发射和GA-BP神经网络的铣削SiCp/Al表面粗糙度预测[J]. 软件工程, 2024, 27(4):6-12

    Jiang Houwei, Chen Zongyu, Liu Deliang, et al. Prediction of surface roughness of SiCp/Al milling based on acoustic emission and GA-BP neural network[J]. Software Engineering, 2024, 27(4): 6-12
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  32
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-25
  • 修回日期:  2024-11-09
  • 录用日期:  2024-11-09
  • 网络出版日期:  2024-11-18

目录

    /

    返回文章
    返回