Protective layer of oxides and nitrides on the surface of extreme ultraviolet multilayers
-
摘要: 极紫外(EUV)反射镜在高能、高功率极紫外光辐照的过程中,其表面易形成碳沉积和氧化,从而影响其反射率,进而缩短其使用寿命。针对这一问题,分别实验研究了在极紫外多层膜表面镀制氮化物和氧化物保护层的制备工艺,并进行了表征。在制备过程中,基于直流反应磁控溅射技术,研究了工艺气体流量与溅射电压之间的“双曲线”关系,以此优化控制反应气体量,进而降低反应溅射过程中反应气体对Mo/Si多层膜的影响。基于这一方法,分别在Mo/Si多层膜表面镀制TiN、ZrN和TiO2保护层,应用掠入射X射线反射(GIXR)、X射线光电子能谱(XPS)和透射电子显微成像(TEM)对其进行了表征,并通过对比分析,验证了氮化物保护层具有一定的性能优势。Abstract: In the process of high energy and high power extreme ultraviolet (EUV) irradiation, carbon deposition and surface oxidation are easy to form on the surface of the EUV mirror, which will affect its reflectivity and shorten its service life. To solve this problem, technology of nitride and oxide capping coating on the surface of extreme ultraviolet multilayer film was studied experimentally and characterized. In the preparation process, based on DC reactive magnetron sputtering coating technology, the "hyperbola" relationship between process gas flow and sputtering voltage was studied, to optimize the control of the amount of reactive gas, and then reduce the influence of reactive gas on Mo/Si multilayer films during reactive sputtering. Based on this method, TiN, ZrN and TiO2 capping layer were plated on the surface of Mo/Si multilayer films and were characterized by grazing incident X-ray reflection (GIXR), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). It is proved that the nitride capping layer has certain performance advantages.
-
表 1 TiNX薄膜成分表
Table 1. TiNX film composition table
Material Mass fraction of Ti/% mass fraction of N/% Mass fraction of O/% TiNX 46.0 45.6 8.4 表 2 ZrNX薄膜成分表
Table 2. ZrNX film composition table
Material Mass fraction of Zr/% Mass fraction of N/% Mass fraction of O/% ZrNX 46.9 45.7 7.4 表 3 TiOX薄膜成分表
Table 3. TiOX film composition table
Material Mass fraction of Ti/% Mass fraction of O/% TiOX 33.5 66.5 -
[1] Madey T E, Faradzhev N S, Yakshinskiy B V, et al. Surface phenomena related to mirror degradation in extreme ultraviolet (EUV) lithography[J]. Applied Surface Science, 2006, 253(4): 1691-1708. doi: 10.1016/j.apsusc.2006.04.065 [2] 李超逸, 陶保全, 郭祥帅, 等. 极紫外多层膜技术的研究进展[J]. 量子光学学报, 2020, 26(4):397-408Li Chaoyi, Tao Baoquan, Guo Xiangshuai, et al. Research progress on extreme ultraviolet multilayer techniques[J]. Journal of Quantum Optics, 2020, 26(4): 397-408 [3] Yulin S, Benoit N, Feigl T, et al. Mo/Si multilayers with enhanced TiO2- and RuO2-capping layers[C]//Proceedings of the SPIE 6921, Emerging Lithographic Technologies XII. 2008: 692118. [4] Hollenshead J T, Klebanoff L E, Delgado G. Predicting radiation-induced carbon contamination of EUV optics[J]. Journal of Vacuum Science & Technology B, 2019, 37: 021602. [5] Motai K, Oizumi H, Miyagaki S, et al. Cleaning technology for EUV multilayer mirror using atomic hydrogen generated with hot wire[J]. Thin Solid Films, 2008, 516(5): 839-843. doi: 10.1016/j.tsf.2007.06.182 [6] 王珣, 金春水, 匡尚奇, 等. 极紫外光辐照下表面碳沉积污染的计算模型[J]. 光学学报, 2014, 34:0531001 doi: 10.3788/AOS201434.0531001Wang Xun, Jin Chunshui, Kuang Shangqi, et al. Simulation model of surface carbon deposition contamination under extreme ultraviolet radiation[J]. Acta Optica Sinica, 2014, 34: 0531001 doi: 10.3788/AOS201434.0531001 [7] Mizutani U, Yamaguchi T, Ikuta H, et al. Fabrication of Mo/Si multilayer mirrors for extreme ultraviolet lithography by means of superconducting bulk magnet magnetron sputtering[J]. Physica C: Superconductivity, 2008, 468(15/20): 1456-1460. [8] Zheng Yi, Sanche L. Effective and absolute cross sections for low-energy (1-30 eV) electron interactions with condensed biomolecules[J]. Applied Physics Reviews, 2018, 5: 021302. [9] Pelizzo M G, Suman M, Monaco G, et al. High performance EUV multilayer structures insensitive to capping layer optical parameters[J]. Optics Express, 2008, 16(19): 15228-15237. [10] Seo H S, Park J, Lee S Y, et al. Properties of EUVL masks as a function of capping layer and absorber stack structures[C]//Proceedings of the SPIE 6517, Emerging Lithographic Technologies XI. 2007: 65171G. [11] Bajt S, Chapman H N, Nguyen N, et al. Design and performance of capping layers for extreme-ultraviolet multilayer mirrors[J]. Applied Optics, 2003, 42(28): 5750-5758. doi: 10.1364/AO.42.005750 [12] Nesládek P, Schmidt J, Krome T. EUV capping layer integrity[C]//Proceedings of the SPIE 10807, Photomask Japan 2018: XXV Symposium on Photomask and Next-Generation Lithography Mask Technology. 2018: 108070E. [13] 王洪昌, 王占山, 李佛生, 等. 帽层对极紫外多层膜反射特性影响分析[J]. 物理学报, 2004, 53(7):2368-2372 doi: 10.3321/j.issn:1000-3290.2004.07.065Wang Hongchang, Wang Zhanshan, Li Fosheng, et al. Analysis of the reflective performance of EUV multilayer under the influence of capping layer[J]. Acta Physica Sinica, 2004, 53(7): 2368-2372 doi: 10.3321/j.issn:1000-3290.2004.07.065 [14] 徐达, 朱京涛, 张众, 等. Mo/Si多层膜表面保护层设计[J]. 光子学报, 2009, 38(1):160-164Xu Da, Zhu Jingtao, Zhang Zhong, et al. Design of capping layers on Mo/Si multilayer[J]. Acta Photonica Sinica, 2009, 38(1): 160-164 [15] Kim T G, Lee S Y, Kim C Y, et al. Characterization of Ru layer for capping/buffer application in EUVL mask[J]. Microelectronic Engineering, 2006, 83(4/9): 688-691. [16] 王珣. 极紫外光学薄膜元件表面抗污染保护层及相关技术研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2015Wang Xun. Study on surface anti-contamination capping layer of the EUV optical elements and related technologies[D]. Changchun: Graduate School of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics), 2015 [17] Nishiyama I, Oizumi H, Motai K, et al. Reduction of oxide layer on Ru surface by atomic-hydrogen treatment[J]. Journal of Vacuum Science & Technology B, 2005, 23(6): 3129-3131. [18] 周洪军, 钟鹏飞, 霍同林, 等. 同步辐射活化氧清洗碳污染的研究[J]. 光学学报, 2010, 30(3):907-910 doi: 10.3788/AOS20103003.0907Zhou Hongjun, Zhong Pengfei, Huo Tonglin, et al. Cleaning of carbon contamination on Si wafer with activated oxygen by synchrotron radiation[J]. Acta Optica Sinica, 2010, 30(3): 907-910 doi: 10.3788/AOS20103003.0907 [19] 匡尚奇, 李硕, 杨海贵, 等. 极紫外宽带多层膜反射镜离散化膜系的设计与制备[J]. 光学 精密工程, 2018, 26(10):2395-2406 doi: 10.3788/OPE.20182610.2395Kuang Shangqi, Li Shuo, Yang Haigui, et al. Design and fabrication of EUV broadband multilayer mirrors with discrete thicknesses[J]. Optics and Precision Engineering, 2018, 26(10): 2395-2406 doi: 10.3788/OPE.20182610.2395 [20] 祝文秀, 金春水, 匡尚奇, 等. 提高极紫外光谱纯度的多层膜设计及制备[J]. 光学学报, 2012, 32:1031002Zhu Wenxiu, Jin Chunshui, Kuang Shangqi, et al. Design and fabrication of the multilayer film of enhancing spectral-purity in extreme ultraviolet[J]. Acta Optica Sinica, 2012, 32: 1031002 [21] 祝国龙, 冯仕猛, 邵建达, 等. 制备超薄多层膜的自动转速控厚法[J]. 中国激光, 2001, A28(11):1027-1031 doi: 10.3321/j.issn:0258-7025.2001.11.019Zhu Guolong, Feng Shimeng, Shao Jianda, et al. Automatically rotation-speed-controlled layer thickness of ultrathin multilayer reflectors[J]. Chinese Journal of Lasers, 2001, A28(11): 1027-1031 doi: 10.3321/j.issn:0258-7025.2001.11.019