High-energy proton irradiation effect of Cascode structure GaN HEMT device
-
摘要: 针对增强型共源共栅Cascode结构GaN HEMT器件,利用5 MeV、60 MeV和300 MeV质子进行注量为2×1012~1×1014 p/cm2的辐照实验,研究高能质子辐照后器件电学性能的退化规律和损伤机制。实验发现,注量为2×1012 p/cm2的5 MeV质子辐照后,器件阈值电压明显减小,跨导峰位负漂且峰值跨导减小,饱和漏极电流显著增加,栅泄露电流无明显变化,当辐照注量达到1×1013 p/cm2后,电学性能退化受到抑制并趋于饱和。分析认为Cascode结构GaN HEMT器件内部级联硅基MOS管的存在是导致辐照后阈值电压负漂和漏极电流增大的内在原因。结合低频噪声测试分析,发现质子辐照注量越高,器件噪声功率谱密度越大,表明辐照引入的缺陷就越多,辐照损伤越严重。与60 MeV和300 MeV质子辐照结果相比,5 MeV质子辐照后器件电学特性退化最为严重。利用SRIM仿真得到GaN材料受到质子辐照后产生的空位情况,结果显示质子入射能量越低,产生的空位数量越多(镓空位VGa占主导),器件电学特性退化就越显著。
-
关键词:
- 增强型GaN HEMT器件 /
- 质子辐照 /
- 电学特性 /
- 低频噪声 /
- SRIM仿真
Abstract: Due to the comprehensive performance advantages, GaN-based power devices are more suitable for the future development needs of RF power amplifier modules in the space equipment such as satellite electronic systems.Therefore, the degradation of electrical characteristics and damage mechanism of the enhancement-mode Cascode structure GaN HEMT devices were studied by irradiation experiments with 5 MeV, 60 MeV and 300 MeV protons at the irradiation dose of 2×1012~1×1014 p/cm2. The experimental results show that when the irradiation dose is 2×1012 p/cm2, the threshold voltage of Cascode structure GaN HEMT device is significantly reduced, the transconductance peak is negative drift and the peak transconductance is reduced, the saturated drain current is significantly increased, and the gate leakage current has no significant change. When the irradiation dose reaches 1×1013 p/cm2, the degradation of electrical properties is inhibited and tends to saturation. It is concluded that the existence of cascaded silicon MOSFET in Cascode structure GaN HEMT is the internal cause of threshold voltage negative drift and drain current increase after proton irradiation. Combined with low-frequency noise test analysis, it is found that the higher the proton irradiation dose, the larger the noise power spectral density of the device, indicating that the more defects introduced by irradiation, the more serious the irradiation damage. Compared with the results of 60 MeV and 300 MeV proton irradiation, the degradation of electrical characteristics of the device after 5 MeV proton irradiation is the most serious. SRIM simulation results show that the lower the proton irradiation energy, the greater the number of vacancies (gallium vacancy is dominated), and the more significant the degradation of electrical characteristics of the device. -
图 1 TP65H035WS器件结构示意图及开封前后器件光学图像
Figure 1. Structure diagram of the TP65H035WS device and optical diagrams of the device before and after decap
(a) structure diagram of device; (b) optical diagram of device before decap; (c) optical diagram of device interiorlayout; (d) optical diagram of device after decap
图 2 实验器件辐照前I-V特性曲线及辐照实验条件流程图
Figure 2. I-V characteristic curves of experimental devices before irradiation and flow chart of irradiation experimental condition
(a) irradiation experimental condition; (b) I-V characteristic curves of experimental devices before irradiation (illustration is threshold voltage); (c) flow chart of irradiation experiment
表 1 器件电学参数与质子辐照能量的依赖性(注量:2×1012 p/cm2)
Table 1. Energy-dependent changes of device electrical parameters after proton irradiation(dose:2×1012 p/cm2)
proton energy/(MeV) Vth/(V) Gm,max/(S) Ids@Vds=1.5V, Vgs=6V/(A) pre-irradiation 4.8±0.2 18.8±0.2 37±0.3 5 1.1 12.1 53.8 60 4.64 18.8 43.4 300 4.73 18.2 39.6 -
[1] Hu Xinwen, Karmarkar A P, Jun B, et al. Proton-irradiation effects on AlGaN/AlN/GaN high electron mobility transistors[J]. IEEE Transactions on Nuclear Science, 2003, 50(6): 1791-1796. doi: 10.1109/TNS.2003.820792 [2] Carbone M, Hirche K, Morand S, et al. An overview of GaN FET technology, reliability, radiation and market for future space application[C]//2019 European Space Power Conference (ESPC). 2019: 1-4. [3] 沈自才. 空间辐射环境工程[M]. 北京: 中国宇航出版社, 2013Shen Zicai. Space radiation environmental engineering[M]. Beijing: China Aerospace Press, 2013 [4] Kim D S, Lee J H, Yeo S, et al. Proton irradiation effects on AlGaN/GaN HEMTs with different isolation methods[J]. IEEE Transactions on Nuclear Science, 2018, 65(1): 579-582. doi: 10.1109/TNS.2017.2780273 [5] Xapsos M A, O’Neill P M, O’Brien T P. Near-earth space radiation models[J]. IEEE Transactions on Nuclear Science, 2013, 60(3): 1691-1705. doi: 10.1109/TNS.2012.2225846 [6] Kim H Y, Kim J, Liu Lu, et al. Effects of proton irradiation energies on degradation of AlGaN/GaN high electron mobility transistors[J]. Journal of Vacuum Science & Technology B, 2012, 30: 012202. [7] Wan Xin, Baker O K, McCurdy M W, et al. Low energy proton irradiation effects on commercial enhancement mode GaN HEMTs[J]. IEEE Transactions on Nuclear Science, 2017, 64(1): 253-257. doi: 10.1109/TNS.2016.2621065 [8] Chen Ziwen, Yue Shaozhong, Wang Jinbin, et al. Proton-induced effect on AlGaN/GaN HEMTs after hydrogen treatment[J]. IEEE Transactions on Device and Materials Reliability, 2021, 21(3): 297-302. doi: 10.1109/TDMR.2021.3090337 [9] Koehler A D, Anderson T J, Tadjer M J, et al. Impact of surface passivation on the dynamic on-resistance of proton-irradiated AlGaN/GaN HEMTs[J]. IEEE Electron Device Letters, 2016, 37(5): 545-548. doi: 10.1109/LED.2016.2537050 [10] Liu Lu, Hwang Y H, Xi Yuyin, et al. Study on the effects of proton irradiation on the dc characteristics of AlGaN/GaN high electron mobility transistors with source field plate[J]. Journal of Vacuum Science & Technology B, 2014, 32: 022202. [11] Kim H Y, Lo C F, Liu L, et al. Proton-irradiated InAlN/GaN high electron mobility transistors at 5, 10, and 15 MeV energies[J]. Applied Physics Letters, 2012, 100: 012107. doi: 10.1063/1.3673906 [12] Hwang Y H, Li Shun, Hsieh Y L, et al. Effect of proton irradiation on AlGaN/GaN high electron mobility transistor off-state drain breakdown voltage[J]. Applied Physics Letters, 2014, 104: 082106. doi: 10.1063/1.4866858 [13] 刘峻, 季启政, 杨铭, 等. 质子辐照对AlGaN/GaN HEMT亚阈值摆幅特性的影响[J]. 半导体技术, 2023, 48(2):110-116Liu Jun, Ji Qizheng, Yang Ming, et al. Influence of proton irradiation on subthreshold swing characteristics of AlGaN/GaN HEMTs[J]. Semiconductor Materials and Devices, 2023, 48(2): 110-116 [14] Keum D M, Sung H K, Kim H. Degradation characteristics of normally-off p-AlGaN gate AlGaN/GaN HEMTs with 5 MeV proton irradiation[J]. IEEE Transactions on Nuclear Science, 2017, 64(1): 258-262. doi: 10.1109/TNS.2016.2612227 [15] 白如雪, 郭红霞, 张鸿, 等. 增强型Cascode结构氮化镓功率器件的高能质子辐射效应研究[J]. 物理学报, 2023, 72:012401 doi: 10.7498/aps.72.20221617Bai Ruxue, Guo Hongxia, Zhang Hong, et al. High-energy proton radiation effect of gallium nitride power device with enhanced Cascode structure[J]. Acta Physica Sinica, 2023, 72: 012401 doi: 10.7498/aps.72.20221617 [16] Faruk M G, Wilkins R, Dwivedi R C, et al. Proton and neutron radiation effects studies of MOSFET transistors for potential deep-space mission applications[C]//2012 IEEE Aerospace Conference. 2012: 1-13. [17] Seehra S S, Slusark W J. The Effect of operating conditions on the radiation resistance of VDMOS power FETs[J]. IEEE Transactions on Nuclear Science, 1982, 29(6): 1559-1563. doi: 10.1109/TNS.1982.4336404 [18] Wu Hao, Fu Xiaojun, Luo Jun, et al. Total ionizing dose effects on the threshold voltage of GaN Cascode devices[J]. Micromachines, 2023, 14: 1832. doi: 10.3390/mi14101832 [19] 姜利来. AlGaN/GaN高迁移率晶体管质子辐照效应计算模拟研究[D]. 上海: 华东师范大学, 2023: 32-38Jiang Lilai. Computational simulation of proton irradiation effect in AlGaN/GaN high mobility transistors[D]. Shanghai: East China Normal University, 2023: 32-38 [20] Ahn S, Dong Chen, Zhu Weidi, et al. Effect of proton irradiation energy on AlGaN/GaN metal-oxide semiconductor high electron mobility transistors[J]. Journal of Vacuum Science & Technology B, 2015, 33: 051208.