Optimal design of capacitor charging power supply algorithm with constant power input
-
摘要: 电容器充电电源充电期间输入端的功率随着输出电压的升高而逐渐增加,不仅需要电网提供较大的峰值功率,还会引起较大的电流谐波,基于一种仅采用单级能量变换就实现了恒功率输入恒流输出功能的带辅助储能电容的单级充电方案提出一种新的控制算法,该算法不仅实现了更好的恒功率特性还解除了对辅助储能电容的限制,可以通过控制储能电容电压提高等效激励电压实现升压功能。利用Matlab/Simulink搭建了恒功率输入的电容器充电的仿真模型,仿真结果显示,在电容器充电400~
2000 V阶段实现了输入端的恒功率,提升辅助电容初始电压,负载电容升压。这表明该算法能实现输入端更优良的恒功率特性以及电路的升压功能。Abstract: During the charging period of capacitor charging power supply, the input power gradually increases with the increase of output voltage, which not only requires the power grid to provide a larger peak power, but also causes larger current harmonics. This paper proposes a new control algorithm based on a single-stage charging scheme with buffered energy storage capacitor that realizes the function of constant power input and constant current output only by using single-stage energy conversion. The algorithm not only achieves better constant power characteristics, but also lifts the restriction on the auxiliary energy storage capacitor. It can improve the equivalent excitation voltage by controlling the voltage of the energy storage capacitor. Matlab/Simulink was used to build a simulation model of capacitor charging with constant power input. The simulation results show that the constant power at the input end is realized during the 400−2 000 V stage of capacitor charging, the initial voltage of auxiliary capacitor is increased, and the voltage of load capacitor is increased at the same time. This shows that the algorithm can achieve better input constant power characteristics and circuit boost function.-
Key words:
- series resonance /
- constant power /
- capacitor charging /
- state plane analysis /
- power density
-
表 1 仿真模型参数
Table 1. Simulation model parameters
input voltage/V buffer capacitor/μF resonant inductor/μH resonant capacitor/μF transformer ratio load capacitor/μF 300 1000 8 0.86 1:10 50 -
[1] 江进波, 徐林, 罗正, 等. 基于LC串联谐振的高压恒流充电电源设计[J]. 强激光与粒子束, 2024, 36:055006 doi: 10.11884/HPLPB202436.230295Jiang Jinbo, Xu Lin, Luo Zheng, et al. Design of high voltage constant current charging power supply based on LC series resonance[J]. High Power Laser and Particle Beams, 2024, 36: 055006 doi: 10.11884/HPLPB202436.230295 [2] Wei Yuqi, Luo Quanming, Mantooth A. Overview of modulation strategies for LLC resonant converter[J]. IEEE Transactions on Power Electronics, 2020, 35(10): 10423-10443. doi: 10.1109/TPEL.2020.2975392 [3] 李伯堂, 刘庆想, 李伟. 基于AC-Link的高增益AC-DC变换器拓扑设计及控制算法[J]. 强激光与粒子束, 2023, 35:075001 doi: 10.11884/HPLPB202335.220325Li Botang, Liu Qingxiang, Li Wei. Topological design and control algorithm for AC-Link high gain series resonant AC-DC converter[J]. High Power Laser and Particle Beams, 2023, 35: 075001 doi: 10.11884/HPLPB202335.220325 [4] 孙凯, 陈欢, 吴红飞. 面向储能系统应用的隔离型双向DC-DC变换器分析方法与控制技术综述[J]. 电工电能新技术, 2019, 38(8):1-9 doi: 10.12067/ATEEE1906021Sun Kai, Chen Huan, Wu Hongfei. A review of analysis method and control technology for isolated bidirectional DC-DC converter used in energy storage systems[J]. Advanced Technology of Electrical Engineering and Energy, 2019, 38(8): 1-9 doi: 10.12067/ATEEE1906021 [5] 李伟. 高效高功率密度电源技术的研究[D]. 成都: 西南交通大学, 2016Li Wei. Research on high-efficiency and high-power-density power supply[D]. Chengdu: Southwest Jiaotong University, 2016 [6] Tan Qinyue, Lin Fuchang, Wang Shaorong, et al. An improved capacitor charging power supply for a power conditioning system[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(4): 1214-1220. doi: 10.1109/TDEI.2011.5976118 [7] 梁潇. 基于PFC的三相输入航空电源PWM调制策略研究[D]. 德阳: 中国民用航空飞行学院, 2023Liang Xiao. Research on PWM modulation strategy of three-phase input aviation power supply based on PFC[D]. Deyang: Civil Aviation Flight Academy of China, 2023 [8] 谭亲跃. 大容量脉冲功率系统对电能质量的影响研究[D]. 武汉: 华中科技大学, 2011Tan Qinyue. Research into the influence of large scale pulsed power system on the power quality[D]. Wuhan: Huazhong University of Science and Technology, 2011 [9] 张家瑜, 张政权. 基于交流链接技术的LLC谐振变换器的研究[D]. 成都: 西南交通大学, 2022Zhang Jiayu, Zhang Zhengquan. Research on LLC resonant converter based on AC link technology[D]. Chengdu: Southwest Jiaotong University, 2022 [10] Amirabadi M, Baek J, Toliyat H A, et al. Soft-switching AC-link three-phase AC–AC buck–boost converter[J]. IEEE Transactions on Industrial Electronics, 2015, 62(1): 3-14. doi: 10.1109/TIE.2014.2331011 [11] 张政权. 新型能量变换与控制技术在高功率微波系统中的应用研究[D]. 成都: 西南交通大学, 2012Zhang Zhengquan. Investigations of novel power conversion and control method in high power microwave systems[D]. Chengdu: Southwest Jiaotong University, 2012 [12] Mozaffari Niapour S A K, Amirabadi M. Extremely sparse parallel AC-link universal power converters[J]. IEEE Transactions on Industry Applications, 2016, 52(3): 2456-2466. doi: 10.1109/TIA.2016.2527728 [13] 阳峰. 基于双管Buck-Boost变换器的电容器充电电源研究[D]. 武汉: 华中科技大学, 2012Yang Feng. Research on capacitor charging power supply based on Two-Switch Buck-Boost Converter[D]. Wuhan: Huazhong University of Science and Technology, 2012 [14] 张政权, 刘庆想, 张同信, 等. 一种电容充电电源的控制方法及其控制装置: CN111030501B[P]. 2020-01-03Zhang Zhengquan, Liu Qingxiang, Zhang Tongxin, et al. Control method and control device of capacitor charging power supply: CN111030501B[P]. 2020-01-03 [15] 李伟, 刘庆想, 张政权. 恒功率输入恒流输出的电容器充电电源[J]. 强激光与粒子束, 2016, 28:075003 doi: 10.11884/HPLPB201628.075003Li Wei, Liu Qingxiang, Zhang Zhengquan. Capacitor charging power supply with constant power input and constant current output[J]. High Power Laser and Particle Beams, 2016, 28: 075003 doi: 10.11884/HPLPB201628.075003 -