留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子储存环逐圈束流损失的探测

任俊杰 随艳峰 于令达 汪林 徐韬光 何俊 岳军会

任俊杰, 随艳峰, 于令达, 等. 电子储存环逐圈束流损失的探测[J]. 强激光与粒子束, 2025, 37: 044009. doi: 10.11884/HPLPB202537.240236
引用本文: 任俊杰, 随艳峰, 于令达, 等. 电子储存环逐圈束流损失的探测[J]. 强激光与粒子束, 2025, 37: 044009. doi: 10.11884/HPLPB202537.240236
Ren Junjie, Sui Yanfeng, Yu Lingda, et al. Detection of turn-by-turn beam loss in electron storage rings[J]. High Power Laser and Particle Beams, 2025, 37: 044009. doi: 10.11884/HPLPB202537.240236
Citation: Ren Junjie, Sui Yanfeng, Yu Lingda, et al. Detection of turn-by-turn beam loss in electron storage rings[J]. High Power Laser and Particle Beams, 2025, 37: 044009. doi: 10.11884/HPLPB202537.240236

电子储存环逐圈束流损失的探测

doi: 10.11884/HPLPB202537.240236
基金项目: 国家自然科学基金面上项目(1247052027)
详细信息
    作者简介:

    任俊杰,renjj@ihep.ac.cn

    通讯作者:

    随艳峰,syf@ihep.ac.cn

    于令达,yuld@ihep.ac.cn

  • 中图分类号: TL506

Detection of turn-by-turn beam loss in electron storage rings

  • 摘要: 调束初期,电子储存环的逐圈束流损失信号可以直观展示出束流的注入、储存和积累状态。介绍了束流损失的种类和机制,列举了几种常见的束流损失探测器及其关键参数。基于北京正负电子对撞机(BEPCII)重大改造工程机器参数,用Geant4模拟了BEPCII束流条件下束流丢失引起的二次粒子分布情况,分析了真空室外簇射电子和光子的分布,根据分析结果,最终选用闪烁体加光电倍增管(PMT)型探测器探测逐圈束损信号,并在BEPCII进行了束流测试。针对闪烁体型束损探测器性能不一致问题,对探测器进行了灵敏度校准并在BEPCII上完成了束流验证,最后介绍了信号采集与处理电子学并计算分析了其测量精度。上述实验为闪烁体束损探测器在高能同步辐射光源储存环上的应用奠定了基础。
  • 图  1  R34OQKicker过渡段真空室截面

    Figure  1.  Cross section of the transition section vacuum chamber of R34OQKicker

    图  2  簇射电子和光子在真空室外的分布

    Figure  2.  Distribution of shower electrons and photons outside the vacuum chamber

    图  3  BEPCII隧道内的两种闪烁体束损探测器实物图

    Figure  3.  Two scintillator beam loss monitors in the BEPCII tunnel

    图  4  BEPCII不同数量束团运行时两种束损探测器的输出信号

    Figure  4.  Output of two beam loss monitors for different numbers of bunches running in BEPCII

    图  5  BEPCII注入时两种束损探测器的输出信号

    Figure  5.  Output of two beam loss monitors for injection in BEPCII

    图  6  闪烁体束损探测器校准系统示意图

    Figure  6.  Schematic diagram of the calibration system for the scintillator beam loss monitor

    图  7  相同控制电压下闪烁体束损探测器的输出幅度对比

    Figure  7.  Comparison of output amplitudes of scintillator beam loss monitors at the same control voltage

    图  8  同等光输入条件下闪烁体束损探测器输出信号129 mV时对应的控制电压

    Figure  8.  Control voltage corresponding to the output signal of 129 mV for the scintillator beam loss monitor under the same optical input condition

    图  9  BEPCII运行时21号和23号探测器的输出幅度对比

    Figure  9.  Comparison of output amplitudes of detectors 21 and 23 during BEPCII running

    图  10  不同采样起始点对信号积分结果的影响

    Figure  10.  Impact of different sampling start points on the integration result

    表  1  几种常见的束流损失探测器及其参数

    Table  1.   Several common beam loss monitors and their parameters

    response time/ns sensitivity/(nC·rad−1) dynamic range
    short ionization chamber 8.9×104 638 108
    long ionization chamber 270 200 104
    PIN diode 5 100 108
    CVD diamond 3.6 44 106
    Cherenkov fiber 20 270Mg 106
    scintillation detector 10 1.8×104Mg 106
    Note: Mg is the multiplication factor of PMT.
    下载: 导出CSV

    表  2  H10721-110及N2013型光电倍增管性能参数

    Table  2.   Performance parameters of H10721-110 and N2013 photomultiplier tubes

    rise time/ns spectral range/nm typical gain
    H10721-110 0.57 230~700 2.2×105
    N2013 1.50 270~650 8×106
    下载: 导出CSV
  • [1] 李裕熊, 李珏忻, 李为民, 等. 新型储存环束流损失监测系统[J]. 中国科学技术大学学报, 2007, 37(4):500-504 doi: 10.3969/j.issn.0253-2778.2007.04.027

    Li Yuxiong, Li Juexin, Li Weimin, et al. A new storage ring beam loss monitoring system[J]. Journal of University of Science and Technology of China, 2007, 37(4): 500-504 doi: 10.3969/j.issn.0253-2778.2007.04.027
    [2] Yang Tao, Sun Jilei, Tian Jianmin, et al. Studies of beam loss monitors at the China Spallation Neutron Source[C]//10th International Beam Instrumentation Conference. 2021: 180-185.
    [3] 何俊, 赵晓岩, 汪林, 等. BEPCⅡ束损系统研究[J]. 核技术, 2015, 38(10):15-21

    He Jun, Zhao Xiaoyan, Wang Lin, et al. Study on beam loss system of BEPCⅡ[J]. Nuclear Techniques, 2015, 38(10): 15-21
    [4] Holzer E B, Dehning B, Effinger E, et al. Beam loss monitoring system for the LHC[C]//IEEE Nuclear Science Symposium Conference Record. 2005: 1052-1056.
    [5] Scheidt B K, Ewald F, Leban P. Optimized beam loss monitor system for the ESRF[C]//Proceedings of IBIC2016. 2016: 86-89.
    [6] 孙玉聪, 蓝杰钦, 张剑锋, 等. 合肥光源托歇克效应损失电子的探测[J]. 强激光与粒子束, 2011, 23(3):770-774 doi: 10.3788/HPLPB20112303.0770

    Sun Yucong, Lan Jieqin, Zhang Jianfeng, et al. Detection of electron loss due to Touschek effect in Hefei Light Source[J]. High Power Laser and Particle Beams, 2011, 23(3): 770-774 doi: 10.3788/HPLPB20112303.0770
    [7] Torino L, Scheidt K B. New beam loss detector system for EBS-ESRF[C]//Proceedings of the 7th International Beam Instrumentation Conference. 2018: 346-352.
    [8] Yoshimoto M, Harada H, Kato S, et al. New scintillation type beam loss monitor to detect spot area beam losses in the J-PARC RCS[C]//Proceedings of the 6th International Beam Instrumentation Conference. 2017: 461-465.
    [9] 张闯, 马力. 北京正负电子对撞机重大改造工程加速器的设计与研制[M]. 上海: 上海科学技术出版社, 2015

    Zhang Chuang, Ma Li. Design and development of the major renovation project for the Beijing Electron Positron Collider accelerator[M]. Shanghai: Shanghai Scientific and Technical Publisher, 2015
    [10] Dehning B, Effinger E, Emery J, et al. The LHC beam loss measurement system[C]//IEEE Particle Accelerator Conference. 2007: 4192-4194.
    [11] Rolfe J, Gearhart R, Jacobsen R, et al. Long ion chamber systems for the SLC[C]//Proceedings of the 1989 IEEE Particle Accelerator Conference. 1989: 1531-1533.
    [12] Ridoutt F. Das Ansprechvermögen des PIN Dioden Strahlverlustmonitors[J]. Internal Note: PKTR-note, 1993(91).
    [13] Wittenburg K. Beam loss monitors[J]. arXiv preprint arXiv:, 2005, 06522: 2020.
    [14] Fisher A S, Clarke C I, Jacobson B T, et al. Beam-loss detection for LCLS-II[C]//8th International Beam Instrumentation Conference. 2019: 229-232.
    [15] Maltseva Y I, Ivanenko S V, Khilchenko A D, et al. Beam loss monitoring system for the SKIF synchrotron light source[J]. Journal of Instrumentation, 2022, 17: T05004. doi: 10.1088/1748-0221/17/05/T05004
    [16] 赵晓岩, 曹建社, 汪林, 等. BEPCⅡ束流损失探测系统及其初步应用[J]. 中国物理C(英文版), 2008, 32(s1):80-82

    Zhao Xiaoyan, Cao Jianshe, Wang Lin, et al. BEPCII beam loss detection system and its initial application[J]. Chinese Physics C: English Edition, 2008, 32(s1): 80-82
    [17] Hou L, Zeng M, Gong G H, et al. Beam loss monitor system for SSRF storage ring[J]. Journal of Nuclear Science and Technology, 2008, 45(s5): 425-427.
    [18] 鲁忠涛, 孙玉聪, 蓝杰钦, 等. 用于能量标定的束流损失测量系统[J]. 强激光与粒子束, 2013, 25(8):2071-2074 doi: 10.3788/HPLPB20132508.2071

    Lu Zhongtao, Sun Yucong, Lan Jieqin, et al. Beam loss measurement system for energy calibration[J]. High Power Laser and Particle Beams, 2013, 25(8): 2071-2074 doi: 10.3788/HPLPB20132508.2071
    [19] 陈伯显, 张智, 杨祎罡. 核辐射物理及探测学[M]. 2版. 哈尔滨: 哈尔滨工程大学出版社, 2021

    Chen Boxian, Zhang Zhi, Yang Yigang. Nuclear radiation physics and detection[M]. 2nd ed. Harbin: Harbin Engineering University Press, 2021
    [20] Agostinelli S, Allison J, Amako K, et al. GEANT4—a simulation toolkit[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 506(3): 250-303.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  111
  • HTML全文浏览量:  62
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-19
  • 修回日期:  2024-12-24
  • 录用日期:  2024-12-24
  • 网络出版日期:  2025-02-14
  • 刊出日期:  2025-04-15

目录

    /

    返回文章
    返回