留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

靶电流对核辐射探测器用铝薄膜组织及性能的影响

李明旭 李欣 郭巧琴 齐源昊 雷雨

李明旭, 李欣, 郭巧琴, 等. 靶电流对核辐射探测器用铝薄膜组织及性能的影响[J]. 强激光与粒子束, 2025, 37: 056002. doi: 10.11884/HPLPB202537.240241
引用本文: 李明旭, 李欣, 郭巧琴, 等. 靶电流对核辐射探测器用铝薄膜组织及性能的影响[J]. 强激光与粒子束, 2025, 37: 056002. doi: 10.11884/HPLPB202537.240241
Li Mingxu, Li Xin, Guo Qiaoqin, et al. Effect of target current on microstructure and properties of Al film for nuclear radiation detector[J]. High Power Laser and Particle Beams, 2025, 37: 056002. doi: 10.11884/HPLPB202537.240241
Citation: Li Mingxu, Li Xin, Guo Qiaoqin, et al. Effect of target current on microstructure and properties of Al film for nuclear radiation detector[J]. High Power Laser and Particle Beams, 2025, 37: 056002. doi: 10.11884/HPLPB202537.240241

靶电流对核辐射探测器用铝薄膜组织及性能的影响

doi: 10.11884/HPLPB202537.240241
基金项目: 陕西省高校发动机关键部件材料研发与应用青年创新团队(K20220185);陕西省重点研发项目(2022GY-404);未央区秦创原科技成果转化项目(202414);西安市科技计划项目(23GXFW0036)
详细信息
    作者简介:

    李明旭,xhlmxu@163.com

    通讯作者:

    郭巧琴,guoqiaoqin66@126.com

  • 中图分类号: TB79

Effect of target current on microstructure and properties of Al film for nuclear radiation detector

  • 摘要: 采用磁控溅射技术控制不同的铝靶电流在 聚对苯二甲酸乙二醇酯 (PET)的表面制备双面铝薄膜。利用扫描电子显微镜(SEM)和原子力显微镜(AFM)观察铝薄膜的微观形貌,使用X射线衍射仪(XRD)对铝薄膜进行物相分析,利用划格法检测铝薄膜和PET的结合情况,利用紫外-可见分光光度计检测铝薄膜的挡光性,采用手持式核辐射探测器检测α和β粒子射线粒子在铝薄膜中的透过率。结果表明:铝薄膜表面光滑平整,具有金属光泽,Al晶粒均匀致密。铝薄膜无孔洞、裂纹等缺陷;随着Al靶电流增加,Al晶粒尺寸、铝薄膜厚度及沉积速率均增大,铝薄膜粗糙度先降低后增大。铝薄膜的挡光性先提高后降低,α、β粒子的平均透过率均逐渐降低;当铝靶电流为2.0 A时,铝薄膜的粗糙度最小,为2.49 nm,光透过率最低在0.025%左右,α、β粒子的平均透过率最高,分别为581.7 CPS、547.2 CPS。
  • 图  1  不同铝靶电流下铝薄膜微观形貌

    Figure  1.  Microscopic morphology of Al film at different Al target currents

    图  2  不同铝靶电流下铝薄膜截面形貌

    Figure  2.  Cross-sectional morphology of Al film at different Al target currents

    图  3  不同铝靶电流下铝薄膜三维形貌

    Figure  3.  3D morphology of the Al film at different Al target currents

    图  4  不同铝靶电流下铝薄膜粗糙度柱状图

    Figure  4.  Histogram of Al film roughness at different Al target currents

    图  5  不同铝靶电流下铝薄膜XRD图谱

    Figure  5.  XRD of Al film under different Al target currents

    图  6  铝靶电流与沉积速率的关系

    Figure  6.  Relationship between Al target current and deposition rate

    图  7  不同铝靶电流下铝薄膜划格试验后的宏观形貌

    Figure  7.  Macroscopic morphology of Al film after scribing test at different Al target currents

    图  8  PET和不同铝靶电流铝薄膜在紫外光区和可见光区的透过率

    Figure  8.  Transmittance of PET and Al film with different Al target currents in the UV and visible regions

    图  9  不同靶电流铝薄膜α、β粒子透过率对比图

    Figure  9.  Comparison of α and β particle transmittance of Al film with different target currents

    表  1  划格试验评级标准

    Table  1.   Grid test rating standards

    gradeexplanationgrid-marked surface
    morphology
    0The cutting edges are completely smooth, with no squares detached./
    1Slight coating detachment occurs at the intersection of cuts, but the affected cross-cut area is not significantly greater than 5%.
    2Coating detachment occurs at the intersections of cuts and/or along the edges of cuts, with the affected cross-cut area significantly greater than 5% but not significantly greater than 15%.
    3The coating partially or completely detaches in large fragments along the cutting edges and/or partially or completely peels off in different areas of the grid. The affected cross-cut area is significantly greater than 15% but not significantly greater than 35%.
    4The coating detaches in large fragments along the cutting edges and/or partially or completely peels off in different areas of the grid. The affected cross-cut area is significantly greater than 35% but not significantly greater than 65%.
    5The extent of peeling exceeds that of Level 4./
    下载: 导出CSV
  • [1] Nadaleti W C, de Souza E G, de Souza S N M. The potential of hydrogen production from high and low-temperature electrolysis methods using solar and nuclear energy sources: the transition to a hydrogen economy in Brazil[J]. International Journal of Hydrogen Energy, 2022, 47(82): 34727-34738. doi: 10.1016/j.ijhydene.2022.08.065
    [2] 乔磊, 姚世峰, 郁俊俊. 高效发电与能源转换技术的发展趋势与前景[J]. 水电水利, 2023, 7(9):31-33 doi: 10.12238/hwr.v7i9.4990

    Qiao Lei, Yao Shifeng, Yu Junjun. Development trend and prospect of efficient power generation and energy conversion technology[J]. Hydropower and Water Resources, 2023, 7(9): 31-33 doi: 10.12238/hwr.v7i9.4990
    [3] 吴放, 缪正强, 梁军. 我国首个核能综合利用技术品牌——“暖核一号”创新发展实践[J]. 国企管理, 2024(2):79-82 doi: 10.3969/j.issn.2095-7599.2024.02.026

    Wu Fang, Miao Zhengqiang, Liang Jun. China's first comprehensive use of nuclear energy technology brand - "Warm Nuclear One" innovation and development practice[J]. China State-Owned Enterprise Management, 2024(2): 79-82 doi: 10.3969/j.issn.2095-7599.2024.02.026
    [4] Le Boulch D, Buronfosse M, Le Guern Y, et al. Meta-analysis of the greenhouse gases emissions of nuclear electricity generation: learnings for process-based LCA[J]. The International Journal of Life Cycle Assessment, 2024, 29(5): 857-872. doi: 10.1007/s11367-024-02293-y
    [5] Adams S, Odonkor S. Status, opportunities, and challenges of nuclear power development in Sub-Saharan Africa: the case of Ghana[J]. Progress in Nuclear Energy, 2021, 138: 103816. doi: 10.1016/j.pnucene.2021.103816
    [6] 蔡永成, 刘学宇, 蔡永军, 等. 核辐射危害及核辐射屏蔽材料研究现状[J]. 粉末冶金工业, 2023, 33(2):96-102

    Cai Yongcheng, Liu Xueyu, Cai Yongjun, et al. Hazards of nuclear radiation and research progress in radiation shielding materials[J]. Powder Metallurgy Industry, 2023, 33(2): 96-102
    [7] 李忠东. 核辐射的危害及应对[J]. 生命与灾害, 2023(1):24-27

    Li Zhongdong. Hazards of nuclear radiation and response[J]. Life & Disaster, 2023(1): 24-27
    [8] 陆思全, 郁丹炯, 顾燕楠. 核辐射对人体生物学危害及其防治策略研究[J]. 绿色科技, 2015, 17(8): 244, 246

    Lu Siquan, YU Danjiong, GU Yannan. Study on the biological harmfulness on human of nuclear radiation and its control strategy[J]. Journal of Green Science and Technology, 2015, 17(8): 244, 246
    [9] Park B, Park B, Kim J. Development of a radiation detector using a silicon photomultiplier and large Ce-doped Gd-Al-Ga-grant scintillator for gamma spectroscopy observations of radioactivation in a linear accelerator[J]. Journal of Instrumentation, 2023, 18: P05019. doi: 10.1088/1748-0221/18/05/P05019
    [10] 曹保锋, 宋立军, 肇文丽, 等. 一种α、β射线探测器: 201410065825.1[P]. 2017-10-27

    Cao Baofeng, Song Lijun, Zhao Wenli, et al. Alpha and beta ray detector: 201410065825.1[P]. 2017-10-27
    [11] 曹保锋, 宋立军, 肇文丽, 等. α、β射线探测器窗口保护罩结构: 201420080198.4[P]. 2014-08-13

    Cao Baofeng, Song Lijun, Zhao Wenli, et al. Window protection cover structure for alpha and beta ray detector: 201420080198.4[P]. 2014-08-13
    [12] 贾雪辉. 一种大面积β射线探测装置的研究[D]. 成都: 成都理工大学, 2014

    Jia Xuehui. Research of a large area detection device for β-ray[D]. Chengdu: Chengdu University of Technology, 2014
    [13] 李振宇, 范宇峰, 刘铖, 等. 国产超薄双面镀铝聚酯薄膜的工艺改进和热物性研究[J]. 表面技术, 2018, 47(9):219-222

    Li Zhenyu, Fan Yufeng, Liu Cheng, et al. Thermal properties and process improvement of domestic ultra-thin aluminized polyester films[J]. Surface Technology, 2018, 47(9): 219-222
    [14] 魏威, 钱成, 邓艳, 等. 高性能VMPET镀铝薄膜[Z]. 嘉兴鹏翔包装材料有限公司, 2019-07-13

    Wei Wei, Qian Cheng, Deng Yan, et al. High performance VMPET aluminised film[Z]. Jiaxing Pengxiang Packaging Material Co, Ltd, 2019-07-13
    [15] 邓艳, 张伟政, 余肇凯, 等. 超薄VMPET镀铝薄膜[Z]. 嘉兴鹏翔包装材料有限公司, 2019-07-13

    Deng Yan, Zhang Weizheng, Yu Zhaokai, et al. Ultra-thin VMPET aluminised film[Z]. Jiaxing Pengxiang Packaging Material Co, Ltd, 2019-07-13
    [16] 陈建军. 柔性PEN基底表面纳米金属薄膜制备及其性能研究[D]. 兰州: 兰州理工大学, 2019: 25-32

    Chen Jianjun. Preparation and properties of nano-metal films on flexible PEN substrates[D]. Lanzhou: Lanzhou University of Technology, 2019: 25-32
    [17] Hua Xiaodong, Li Jiahui, Liu Hao, et al. Preparation of Cu2Se thin films by vacuum evaporation and hot-pressing[J]. Vacuum, 2021, 185: 109947. doi: 10.1016/j.vacuum.2020.109947
    [18] Twu M J, Chiou A H, Hu C C, et al. Properties of TiO2 films deposited on flexible substrates using direct current magnetron sputtering and using high power impulse magnetron sputtering[J]. Polymer Degradation and Stability, 2015, 117: 1-7. doi: 10.1016/j.polymdegradstab.2015.03.010
    [19] Jörg T, Cordill M J, Franz R, et al. The electro-mechanical behavior of sputter-deposited Mo thin films on flexible substrates[J]. Thin Solid Films, 2016, 606: 45-50. doi: 10.1016/j.tsf.2016.03.032
    [20] 王翠凤, 邱锡荣, 赵乙璇, 等. 直流磁控溅射法在PET基板上制备AZO薄膜[J]. 中国表面工程, 2012, 25(6):53-60 doi: 10.3969/j.issn.1007-9289.2012.06.009

    Wang Cuifeng, Qiu Xirong, Zhao Yixuan, et al. Preparation of AZO thin films on PET substrate using DC magnetron sputtering[J]. China Surface Engineering, 2012, 25(6): 53-60 doi: 10.3969/j.issn.1007-9289.2012.06.009
    [21] 杨子江. 靶电流和气体流量对含Ti薄膜光学性能的影响[D]. 北京: 中国地质大学(北京), 2016: 32-37

    Yang Zijiang. Influence of target current and gas flow on structure and optical properties of Titanium-containing film[D]. Beijing: China University of Geosciences (Beijing), 2016: 32-37
    [22] 朱秀榕, 董煜, 李晓芬. 溅射电流对钛薄膜光电性能的影响[J]. 赣南师范大学学报, 2021, 42(6):30-34

    Zhu Xiurong, Dong Yu, Li Xiaofen. Effect of sputtering current on photoelectric properties of titanium thin film[J]. Journal of Gannan Normal University, 2021, 42(6): 30-34
    [23] 刘容宏, 孙元浩, 刘芳. 镀铝薄膜正反面阻隔性能变化研究[J]. 绿色包装, 2021(9):23-25

    Liu Ronghong, Sun Yuanhao, Liu Fang. Research on the change of front and back barrier property of plastic film deposited with aluminium[J]. Green Packaging Research·Technology, 2021(9): 23-25
    [24] Levinson R, Chen S, Slack J, et al. Design, characterization, and fabrication of solar-retroreflective cool-wall materials[J]. Solar Energy Materials and Solar Cells, 2020, 206: 110117. doi: 10.1016/j.solmat.2019.110117
    [25] 花银群, 朱爱春, 陈瑞芳, 等. 直流磁控溅射铝纳米颗粒膜的微结构及电学特性[J]. 功能材料, 2015, 46(4):4071-4075 doi: 10.3969/j.issn.1001-9731.2015.04.014

    Hua Yinqun, Zhu Aichun, Chen Ruifang, et al. Microstructure andelectrical properties of Al nano-particle films by DC magnetron sputtering[J]. Journal of Functional Materials, 2015, 46(4): 4071-4075 doi: 10.3969/j.issn.1001-9731.2015.04.014
    [26] 庞丽侠. 磁控溅射铝镀层结构对316L不锈钢表面阳极氧化成孔的影响[D]. 哈尔滨: 哈尔滨工业大学, 2009: 25-32

    Pang Lixia. Effect of magnetron sputtering aluminum film structure on anodic micro-pores formed on surface of 316L stainless steel[D]. Harbin: Harbin Institute of Technology, 2009: 25-32
    [27] 李海兵, 徐勇军, 蔡其文, 等. 太阳能高反射薄膜制备技术对薄膜性能的影响[J]. 中国表面工程, 2016, 29(3):34-40 doi: 10.11933/j.issn.1007-9289.2016.03.005

    Li Haibing, Xu Yongjun, Cai Qiwen, et al. Influences of preparation technologies on properties of solar high reflection thin films[J]. China Surface Engineering, 2016, 29(3): 34-40 doi: 10.11933/j.issn.1007-9289.2016.03.005
    [28] 杨万里. 手足表面α、β污染检测仪的研制[D]. 衡阳: 南华大学, 2021: 20-27

    Yang Wanli. Development of α and β contamination detector for hand and foot surface[D]. Hengyang: University of South China, 2021: 20-27
    [29] 王迪. 便携式辐射探测仪的设计与实现[D]. 太原: 中北大学, 2021: 17-25

    Wang Di. Design and realization of portable radiation detector[D]. Taiyuan: North University of China, 2021: 17-25
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  63
  • HTML全文浏览量:  48
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-23
  • 修回日期:  2025-02-24
  • 录用日期:  2025-02-24
  • 网络出版日期:  2025-03-15
  • 刊出日期:  2025-03-31

目录

    /

    返回文章
    返回