[1] |
Guan Zanyang, Li Yulong, Wang Feng, et al. Study on the length of diagnostic time window of CUP-VISAR[J]. Measurement Science and Technology, 2021, 32: 125208. doi: 10.1088/1361-6501/ac29d4
|
[2] |
吴宇际, 王秋平, 王峰, 等. 广角任意反射面速度干涉仪的光学性质研究[J]. 强激光与粒子束, 2019, 31:032001 doi: 10.11884/HPLPB201931.190045Wu Yuji, Wang Qiuping, Wang Feng, et al. Optical properties of wide-angle velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2019, 31: 032001 doi: 10.11884/HPLPB201931.190045
|
[3] |
Ma Zijian. The progress and the state-of-art facilities of inertial confinement fusion[J]. Journal of Physics: Conference Series, 2022, 2386: 012057. doi: 10.1088/1742-6596/2386/1/012057
|
[4] |
Yang Yongmei, Li Yulong, Guan Zanyang, et al. A diagnostic system toward high-resolution measurement of wavefront profile[J]. Optics Communications, 2020, 456: 124554. doi: 10.1016/j.optcom.2019.124554
|
[5] |
Qi Dalong, Zhang Shian, Yang Chengshuai, et al. Single-shot compressed ultrafast photography: a review[J]. Advanced Photonics, 2020, 2: 014003.
|
[6] |
黎淼, 余柏汕, 王玺, 等. 基于全变分正则约束的二维冲击波速度场条纹重构技术[J]. 光学学报, 2023, 43:1911003 doi: 10.3788/AOS230777Li Miao, Yu Baishan, Wang Xi, et al. Fringe reconstruction technology of two-dimensional shock wave velocity field based on total variation regularization constraints[J]. Acta Optica Sinica, 2023, 43: 1911003 doi: 10.3788/AOS230777
|
[7] |
Zhang Yan, Li Jie, Li Xinyue, et al. Image stripe noise removal based on compressed sensing[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2022, 36: 2254004. doi: 10.1142/S0218001422540040
|
[8] |
王峰, 理玉龙, 关赞洋, 等. 压缩感知技术在激光惯性约束聚变研究中的应用[J]. 强激光与粒子束, 2022, 34:031021 doi: 10.11884/HPLPB202234.210250Wang Feng, Li Yulong, Guan Zanyang, et al. Application of compressed sensing technology in laser inertial confinement fusion[J]. High Power Laser and Particle Beams, 2022, 34: 031021 doi: 10.11884/HPLPB202234.210250
|
[9] |
Wang Xi, Zhang Lei, Miao Li, et al. Research into CUP-VISAR velocity reconstruction based on weighted DRUNet and total variation joint optimization[J]. Optics Letters, 2023, 48(20): 5181-5184. doi: 10.1364/OL.498607
|
[10] |
郑铠涛, 李海艳, 甘华权, 等. 基于低秩约束和全变分正则化的CUP-VISAR压缩图像重构算法[J]. 强激光与粒子束, 2023, 35:072002 doi: 10.11884/HPLPB202335.230011Zheng Kaitao, Li Haiyan, Gan Huaquan, et al. CUP-VISAR image reconstruction based on low-rank prior and total-variation regularization[J]. High Power Laser and Particle Beams, 2023, 35: 072002 doi: 10.11884/HPLPB202335.230011
|
[11] |
黄庆鑫, 李海艳, 甘华权, 等. 基于变加速广义交替投影的CUP-VISAR压缩图像反演算法[J]. 光学学报, 2023, 43:2111004 doi: 10.3788/AOS230726Huang Qingxin, Li Haiyan, Gan Huaquan, et al. CUP-VISAR compressed image inversion algorithm based on variable-accelerated generalized alternating projection[J]. Acta Optica Sinica, 2023, 43: 2111004 doi: 10.3788/AOS230726
|
[12] |
Gao Liang, Liang Jinyang, Li Chiye, et al. Single-shot compressed ultrafast photography at one hundred billion frames per second[J]. Nature, 2014, 516(7529): 74-77. doi: 10.1038/nature14005
|
[13] |
Madych W R. Solutions of underdetermined systems of linear equations[C]//Spatial Statistics and Imaging: Papers from the Research Conference on Image Analysis and Spatial Statistics Held. 1991: 227-238.
|
[14] |
牟晓霜, 黎淼, 王玺, 等. 基于分块平滑投影二次重构算法的单像素成像系统[J]. 强激光与粒子束, 2022, 34:119002 doi: 10.11884/HPLPB202234.220190Mou Xiaoshuang, Li Miao, Wang Xi, et al. Single-pixel imaging system based on block smoothed projected quadratic reconstruction algorithm[J]. High Power Laser and Particle Beams, 2022, 34: 119002 doi: 10.11884/HPLPB202234.220190
|
[15] |
高秋玲, 成巍, 李文龙, 等. 复杂背景下的结构光条纹中心提取算法研究[J]. 山东科学, 2024, 37(2):65-73 doi: 10.3976/j.issn.1002-4026.20230133Gao Qiuling, Cheng Wei, Li Wenlong, et al. Centerline extraction algorithm of structured light streak in a complex background[J]. Shandong Science, 2024, 37(2): 65-73 doi: 10.3976/j.issn.1002-4026.20230133
|
[16] |
徐瑶. 正反格雷码与相移周期错位矫正的视觉测量及目标重建[D]. 哈尔滨: 哈尔滨理工大学, 2023Xu Yao. Visual measurement and object reconstruction based on forward and inverse gray code and phase shift period dislocation correction[D]. Harbin: Harbin University of Science and Technology, 2023
|
[17] |
余远平, 李海艳, 甘华权, 等. 基于卡尔曼滤波的双约束CUP-VISAR压缩图像重构算法[J]. 强激光与粒子束, 2023, 35:082005 doi: 10.11884/HPLPB202335.230100Yu Yuanping, Li Haiyan, Gan Huaquan, et al. Double-constrained CUP-VISAR compressed image reconstruction algorithm based on Kalman filtering[J]. High Power Laser and Particle Beams, 2023, 35: 082005 doi: 10.11884/HPLPB202335.230100
|
[18] |
Sumbul U, Santos J M, Pauly J M. Improved time series reconstruction for dynamic magnetic resonance imaging[J]. IEEE Transactions on Medical Imaging, 2009, 28(7): 1093-1104. doi: 10.1109/TMI.2008.2012030
|
[19] |
Teodoro M F, Pereira C, Henriques P, et al. Prediction of ship movement using a Kalman filter algorithm[J]. Advances in Science and Technology, 2024, 144: 93-100.
|
[20] |
Feng Shuo, Li Xuegui, Zhang Shuai, et al. A review: state estimation based on hybrid models of Kalman filter and neural network[J]. Systems Science & Control Engineering, 2023, 11: 2173682.
|
[21] |
Puspitaningtyas D A, Mulyantoro D K, Sudiyono S. Kalman filter for artifact reduction in MRI imaging: a literature review[J]. Applied Mechanics and Materials, 2023, 913: 79-88. doi: 10.4028/p-143r36
|
[22] |
Sun Xiaoqi, Gao Wenxi, Duan Yinong. MR brain image segmentation using a fuzzy weighted multiview possibility clustering algorithm with low-rank constraints[J]. Journal of Medical Imaging and Health Informatics, 2021, 11(2): 402-408. doi: 10.1166/jmihi.2021.3280
|
[23] |
Beck A, Teboulle M. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems[J]. IEEE Transactions on Image Processing, 2009, 18(11): 2419-2434. doi: 10.1109/TIP.2009.2028250
|
[24] |
Yuan Xin, Liu Yang, Suo Jinli, et al. Plug-and-play algorithms for large-scale snapshot compressive imaging[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 1444-1454.
|
[25] |
Jin Jianqiu, Yang Bailing, Liang Kewei, et al. General image denoising framework based on compressive sensing theory[J]. Computers & Graphics, 2014, 38: 382-391.
|
[26] |
Mathew R S, Paul J S. Automated regularization parameter selection using continuation based proximal method for compressed sensing MRI[J]. IEEE Transactions on Computational Imaging, 2020, 6: 1309-1319. doi: 10.1109/TCI.2020.3019111
|
[27] |
马坚伟, 徐杰, 鲍跃全, 等. 压缩感知及其应用: 从稀疏约束到低秩约束优化[J]. 信号处理, 2012, 28(5):609-623 doi: 10.3969/j.issn.1003-0530.2012.05.001Ma Jianwei, Xu Jie, Bao Yuequan, et al. Compressive sensing and its application: from sparse to low-rank regularized optimization[J]. Journal of Signal Processing, 2012, 28(5): 609-623 doi: 10.3969/j.issn.1003-0530.2012.05.001
|
[28] |
Gillis N, Glineur F. Low-rank matrix approximation with weights or missing data is NP-hard[J]. SIAM Journal on Matrix Analysis and Applications, 2011, 32(4): 1149-1165. doi: 10.1137/110820361
|
[29] |
Zhang Fan, Fan Hui, Liu Peiqiang, et al. Image denoising using hybrid singular value thresholding operators[J]. IEEE Access, 2020, 8: 8157-8165. doi: 10.1109/ACCESS.2020.2964683
|
[30] |
Wang Zhou, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. doi: 10.1109/TIP.2003.819861
|
[31] |
何南南, 解凯, 李桐, 等. 图像质量评价综述[J]. 北京印刷学院学报, 2017, 25(2):47-50 doi: 10.3969/j.issn.1004-8626.2017.02.012He Nannan, Xie Kai, Li Tong, et al. Overview of image quality assessment[J]. Journal of Beijing Institute of Graphic Communication, 2017, 25(2): 47-50 doi: 10.3969/j.issn.1004-8626.2017.02.012
|