留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小型化全固态方波Marx发生器的研究

李孜 马睿一 饶俊峰 姜松

李孜, 马睿一, 饶俊峰, 等. 小型化全固态方波Marx发生器的研究[J]. 强激光与粒子束, 2025, 37: 025001. doi: 10.11884/HPLPB202537.240248
引用本文: 李孜, 马睿一, 饶俊峰, 等. 小型化全固态方波Marx发生器的研究[J]. 强激光与粒子束, 2025, 37: 025001. doi: 10.11884/HPLPB202537.240248
Li Zi, Ma Ruiyi, Rao Junfeng, et al. Study of a miniaturized solid-state Marx generator[J]. High Power Laser and Particle Beams, 2025, 37: 025001. doi: 10.11884/HPLPB202537.240248
Citation: Li Zi, Ma Ruiyi, Rao Junfeng, et al. Study of a miniaturized solid-state Marx generator[J]. High Power Laser and Particle Beams, 2025, 37: 025001. doi: 10.11884/HPLPB202537.240248

小型化全固态方波Marx发生器的研究

doi: 10.11884/HPLPB202537.240248
基金项目: 国家自然科学基金项目(12205192);姑苏青年领军人才项目(ZXL2023210)
详细信息
    作者简介:

    李 孜,lz7209@126.com

    通讯作者:

    饶俊峰,raojf@sibet.ac.cn

  • 中图分类号: TM832

Study of a miniaturized solid-state Marx generator

  • 摘要: 提出了一种带有新型磁隔离驱动电路的小型化全固态方波Marx发生器。小型化全固态方波Marx发生器的主电路基于半桥结构,将相邻级的充电开关和放电开关的源极短接,与串芯磁环磁隔离驱动方法相结合,只需一个来自初级侧的双极性信号就能同步驱动Marx发生器中的所有开关,从而大大减少了驱动电路中所需的元件数量。搭建了14级实验样机,电源总质量仅为314 g,宽15 cm、长8 cm、高5 cm。在电阻负载上获得了峰值电压为10 kV、最大重复频率为10 kHz、脉冲宽度为200 ns~5 μs的高压方波脉冲。利用样机产生的500 ns、10 kV、1 kHz的方波脉冲驱动了介质阻挡放电负载,产生了均匀且强烈的放电,表明该小型化Marx 发生器适合驱动介质阻挡放电负载、用作低温等离子体源。
  • 图  1  提出的小型Marx发生器结构框图

    Figure  1.  Block diagram of the proposed miniaturized Marx generator

    图  2  固态Marx发生器的充电、放电和截尾回路示意图

    Figure  2.  Schematic circuit of the solid-state Marx generator (SSMG) with charging, discharging and tail-cutting loops

    图  3  磁隔离驱动电路示意图

    Figure  3.  Schematic of magnetic isolated drive circuit

    图  4  放电开关导通示意图

    Figure  4.  Schematic diagram of turning on of discharging switches

    图  5  充电开关驱动信号示意图

    Figure  5.  Schematic diagram of driving signal of charging switches

    图  6  14级小型全固态方波Marx发生器实物图

    Figure  6.  Image of the 14-stage miniaturized all-solid-state square wave Marx generator

    图  7  充电开关和放电开关上的栅极电压波形图

    Figure  7.  Waveforms of gate voltage across charging and discharging switches

    图  8  脉冲宽度为2 μs时的不同电压波形

    Figure  8.  Waveforms of different voltages under the pulse width of 2 μs

    图  9  不同脉冲宽度下的10 kV电压波形

    Figure  9.  10 kV voltage waveform with different pulse widths

    图  10  在10 kHz重频下的10 kV脉冲电压波形

    Figure  10.  Voltage waveform of 10 kV pulses at 10 kHz

    图  11  介质阻挡放电(DBD)装置及实验系统示意图

    Figure  11.  Schematic diagram of dielectric barrier discharge(DBD) device and experimental system

    图  12  介质阻挡层放电的电压和电流波形

    Figure  12.  Voltage and current waveforms of dielectric barrier discharge

    图  13  小型全固态方波Marx发生器驱动的DBD图像

    Figure  13.  Image of DBD excited by the miniaturized all-solid-state square wave Marx generator

  • [1] Yang Jianhua, Zhang Zicheng, Yang Hanwu, et al. Compact intense electron-beam accelerators based on high energy density liquid pulse forming lines[J]. Matter and Radiation at Extremes, 2018, 3(6): 278-292. doi: 10.1016/j.mre.2018.07.002
    [2] 宋法伦, 金晓, 李飞, 等. 20GW紧凑Marx型重复频率脉冲驱动源研制进展[J]. 强激光与粒子束, 2017, 29:020101 doi: 10.11884/HPLPB201729.160510

    Song Falun, Jin Xiao, Li Fei, et al. Progress on 20 GW compact repetitive Marx generator development[J]. High Power Laser and Particle Beams, 2017, 29: 020101 doi: 10.11884/HPLPB201729.160510
    [3] 韩若愚, 李柳霞, 钱盾, 等. 液体中金属丝电爆炸的研究现状与展望[J]. 高电压技术, 2021, 47(3):766-777

    Han Ruoyu, Li Liuxia, Qian Dun, et al. Exploding metal wires in liquids: current situation and prospects[J]. High Voltage Engineering, 2021, 47(3): 766-777
    [4] 吴晓, 米彦, 郑伟, 等. 脉冲电场对细胞膜电穿孔面积的影响研究[J]. 电工技术学报, 2023, 38(14):3779-3788

    Wu Xiao, Mi Yan, Zheng Wei, et al. Effect of pulsed electric field on electroporation area of cell membrane[J]. Transactions of China Electrotechnical Society, 2023, 38(14): 3779-3788
    [5] 乔乾森, 巴德玛, 李长青, 等. 低温等离子体表面处理技术研究[J]. 材料保护, 2022, 55(12):55-60

    Qiao Qiansen, Ba Dema, Li Changqing, et al. Research on low-temperature plasma surface treatment technology[J]. Materials Protection, 2022, 55(12): 55-60
    [6] Qi Liqiang, Chen Qihao, Zhao Weiyuan, et al. Removal of toluene using an integrative DBD/Absorption reactor: Feasibility and mechanism[J]. Journal of Environmental Chemical Engineering, 2023, 11: 110387. doi: 10.1016/j.jece.2023.110387
    [7] 江伟华, 德地明, 须贝太一, 等. 小型脉冲功率发生器的电路方法与实践[J]. 强激光与粒子束, 2024, 36:055001 doi: 10.11884/HPLPB202436.240053

    Jiang Weihua, Akira T, Taichi S, et al. Compact pulsed-power circuit methods and practice[J]. High Power Laser and Particle Beams, 2024, 36: 055001 doi: 10.11884/HPLPB202436.240053
    [8] Burkin E Y, Sviridov V V, Chumerin P Y. A compact pulse magnetron microwave generator based on a solid-state switch[J]. Instruments and Experimental Techniques, 2023, 66(1): 60-66. doi: 10.1134/S0020441223010086
    [9] Zhang Chengbo, Liu Kefu, Qiu Jian. Array microhollow cathode (MHC) discharges with pretrigger device triggered by nanosecond pulses at atmospheric pressure[J]. IEEE Transactions on Plasma Science, 2016, 44(10): 1961-1970.
    [10] 饶俊峰, 李成建, 李孜, 等. 全固态高重频高压脉冲电源[J]. 强激光与粒子束, 2019, 31:035001 doi: 10.11884/HPLPB201931.190005

    Rao Junfeng, Li Chengjian, Li Zi, et al. All solid state high-frequency and high voltage pulsed power supply[J]. High Power Laser and Particle Beams, 2019, 31: 035001 doi: 10.11884/HPLPB201931.190005
    [11] 饶俊峰, 洪凌锋, 郭龙跃, 等. 多路Marx并联高压脉冲电源研究[J]. 强激光与粒子束, 2020, 32:055001 doi: 10.11884/HPLPB202032.190472

    Rao Junfeng, Hong Lingfeng, Guo Longyue, et al. Investigation of high voltage pulse generators with Marx generators in parallel[J]. High Power Laser and Particle Beams, 2020, 32: 055001 doi: 10.11884/HPLPB202032.190472
    [12] 饶俊峰, 汪文超, 石富坤, 等. 自触发驱动的双极性脉冲叠加器[J]. 高电压技术, 2023, 49(8):3258-3267

    Rao Junfeng, Wang Wenchao, Shi Fukun, et al. A self-triggering bipolar pulse adder[J]. High Voltage Engineering, 2023, 49(8): 3258-3267
    [13] Rao Junfeng, Zhang Rui, Shi Fukun, et al. A high-voltage solid-state Marx generator with adjustable pulse edges[J]. High Voltage, 2023, 8(5): 878-888. doi: 10.1049/hve2.12311
    [14] Matsukawa R, Yamaguchi T, Matsuda M, et al. Development of a compact nanosecond pulse generator[C]//IEEE Pulsed Power & Plasma Science (PPPS). 2019: 1-4.
    [15] Bae J S, Kim T H, Son S H, et al. Compact solid-state Marx modulator with fast switching for nanosecond pulse[J]. IEEE Transactions on Power Electronics, 2022, 37(8): 9406-9414. doi: 10.1109/TPEL.2022.3156586
    [16] 庄龙宇, 杨均翔, 须貝太一, 等. 紧凑型全固态高重复频率LC-Marx脉冲发生器[J]. 强激光与粒子束, 2021, 33:065003 doi: 10.11884/HPLPB202133.210114

    Zhuang Longyu, Yang Junxiang, Taichi S, et al. Compact all-solid-state high frequency LC-Marx generator based on magnetic switch[J]. High Power Laser and Particle Beams, 2021, 33: 065003 doi: 10.11884/HPLPB202133.210114
    [17] 姚皓伟, 李孜, 王永刚, 等. 一种紧凑型固态Marx发生器的研究[J]. 强激光与粒子束, 2024, 36:025006 doi: 10.11884/HPLPB202436.230148

    Yao Haowei, Li Zi, Wang Yonggang, et al. Investigation of a compact solid-state Marx generator[J]. High Power Laser and Particle Beams, 2024, 36: 025006 doi: 10.11884/HPLPB202436.230148
    [18] 文韬, 向念文, 章程, 等. 高压放电等离子体研究现状及发展趋势[J]. 高电压技术, 2023, 49(8):3226-3239

    Wen Tao, Xiang Nianwen, Zhang Cheng, et al. Research status and development trend of high voltage discharge plasma[J]. High Voltage Engineering, 2023, 49(8): 3226-3239
    [19] 李梦遥, 王歆昀, 赵昱雷, 等. 纳秒脉冲电压幅值和上升/下降沿时间对大气压氮气DBD均匀性的影响[J]. 高电压技术, 2024, 50(2):852-860

    Li Mengyao, Wang Xinyun, Zhao Yulei, et al. Influence of nanosecond pulse voltage amplitude and rising/falling edge time on the uniformity of atmospheric pressure N2 DBD[J]. High Voltage Engineering, 2024, 50(2): 852-860
    [20] 庄越, 刘峰, 储海靖, 等. 交流和纳秒脉冲Ar/H2O介质阻挡放电聚丙烯材料表面亲水改性对比研究[J]. 强激光与粒子束, 2021, 33:0650 doi: 10.11884/HPLPB202133.210051

    Zhuang Yue, Liu Feng, Chu Haijing, et al. Comparison study of PP hydrophilic surface modification by Ar/H2O dielectric barrier discharge excited by AC and nanosecond pulse voltage[J]. High Power Laser and Particle Beams, 2021, 33: 0650 doi: 10.11884/HPLPB202133.210051
  • 加载中
图(13)
计量
  • 文章访问数:  105
  • HTML全文浏览量:  44
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-04
  • 修回日期:  2024-11-26
  • 录用日期:  2033-03-26
  • 网络出版日期:  2025-01-07
  • 刊出日期:  2025-02-15

目录

    /

    返回文章
    返回