留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

P型开关截尾自触发方波脉冲叠加器

李孜 吴路生 饶俊峰 姜松

李孜, 吴路生, 饶俊峰, 等. P型开关截尾自触发方波脉冲叠加器[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240253
引用本文: 李孜, 吴路生, 饶俊峰, 等. P型开关截尾自触发方波脉冲叠加器[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240253
Li Zi, Wu Lusheng, Rao Junfeng, et al. Self-triggering square-wave pulse adder with P-channel switches[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240253
Citation: Li Zi, Wu Lusheng, Rao Junfeng, et al. Self-triggering square-wave pulse adder with P-channel switches[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240253

P型开关截尾自触发方波脉冲叠加器

doi: 10.11884/HPLPB202537.240253
基金项目: 国家自然科学基金项目(12205192);姑苏青年领军人才项目(ZXL2023210)
详细信息
    作者简介:

    李 孜,lz7209@126.com

    通讯作者:

    饶俊峰,raojf@sibet.ac.cn

  • 中图分类号: TM832

Self-triggering square-wave pulse adder with P-channel switches

  • 摘要: 基于自触发技术提出了一种带截尾功能的方波脉冲叠加器。N型开关与P型开关串联形成特殊的半桥结构,只需要提供一路隔离双极性信号控制第一级的充电和放电开关,所有其它级的开关逐级导通和关断,即又产生高压方波脉冲。该技术不仅大幅简化了脉冲叠加器的驱动电路,还实现了截尾功能,产生快速前后沿的准方波脉冲。并且利用耗尽型N型开关的自动导通特点实现了无需控制的自取电,显著提升驱动电路的绝缘水平。搭建了9级电源样机进行实验验证,实验结果表明:在10 kΩ阻性负载上产生了稳定的重频正极性方波脉冲,电压幅值2.3~3.6 kV可调,脉宽1~10 μs可调,频率0~1 kHz可调,前后沿在100 ns左右,且随着工作电压的升高而加快。10 kΩ和3 nF阻容串联负载下波形仍然是较好的方波脉冲,脉冲前后沿与阻性负载相比没有明显变慢。该脉冲叠加器结构紧凑,有利于实现固态脉冲电源的小型化。
  • 图  1  自触发驱动的脉冲叠加器电路原理图

    Figure  1.  Circuit schematic diagram of self-triggered pulse adder

    图  2  脉冲叠加器辅助电路设计电路图

    Figure  2.  Pulse adder auxiliary circuit design

    图  3  自触发驱动导通回路和自触发放电回路

    Figure  3.  Self-triggering drive conduction circuit and self-triggering discharge circuit

    图  4  自触发驱动的截尾回路

    Figure  4.  Truncated loop for self-trigger drive

    图  5  9级驱动电压仿真波形

    Figure  5.  Simulated waveforms of nine-stage gate voltage

    图  6  负载为10 kΩ的输出波形图

    Figure  6.  Output waveform with 10 kΩ load

    图  7  第5级驱动电压波形图

    Figure  7.  Waveforms of the fifth-stage driving voltage

    图  8  自触发驱动的脉冲叠加器的实物图

    Figure  8.  Image of the proposed self-triggering pulse adder

    图  9  1 kHz重频电压波形

    Figure  9.  1 kHz repetitive voltage waveform

    图  10  叠加器输出电压波形

    Figure  10.  Output voltage waveforms of adder

    图  11  不同负载下的输出电压波形图

    Figure  11.  Output voltage waveform at different loads

    图  12  阻容串联负载下不同电压幅值的输出波形

    Figure  12.  Output waveform of different voltage amplitudes under a resistor-capacitance series load

    表  1  电路参数

    Table  1.   Circuit parameters

    signal
    width/μs
    gate capacitance
    Can/nF
    driving capacitance
    Cbn/pF
    gate series
    resistance/Ω
    resistance of
    load/kΩ
    storage capacitance
    Cn/μF
    1 3.3n 510 10 10 1
    下载: 导出CSV
  • [1] Shao Tao, Zhang Cheng, Long Kaihua, et al. Surface modification of polyimide films using unipolar nanosecond-pulse DBD in atmospheric air[J]. Applied Surface Science, 2010, 256(12): 3888-3894. doi: 10.1016/j.apsusc.2010.01.045
    [2] 陈秉岩, 刘昌裕, 万良淏, 等. 正负电晕放电改性白松木表面形貌和润湿特性[J]. 高电压技术, 2021, 47(3):786-795

    Chen Bingyan, Liu Changyu, Wan Lianghao, et al. Surface modification characteristics for morphology and wetting of white pine wood by using positive and negative corona discharge[J]. High Voltage Engineering, 2021, 47(3): 786-795
    [3] 李黎, 彭明洋, 腾云, 等. 大气压重频纳秒脉冲放电对尼龙纤维的表面改性[J]. 高电压技术, 2016, 42(3):753-761

    Li Li, Peng Mingyang, Teng Yun, et al. Surface modification of nylon fiber using atmospheric repetitive nanosecond pulse discharge[J]. High Voltage Engineering, 2016, 42(3): 753-761
    [4] 姚陈果, 郭飞, 董守龙, 等. 纳秒脉冲处理A375细胞裸鼠皮下移植瘤的疗效评估[J]. 高电压技术, 2013, 39(1):117-121 doi: 10.3969/j.issn.1003-6520.2013.01.017

    Yao Chenguo, Guo Fei, Dong Shoulong, et al. Treatment effect assessment of A375 cell subcutaneous transplantable tumor in nude mouse with nanosecond pulsed electric fields[J]. High Voltage Engineering, 2013, 39(1): 117-121 doi: 10.3969/j.issn.1003-6520.2013.01.017
    [5] Gad A, Jayaram S H. Effect of electric pulse parameters on releasing metallic particles from stainless steel electrodes during PEF processing of milk[J]. IEEE Transactions on Industry Applications, 2014, 50(2): 1402-1409. doi: 10.1109/TIA.2013.2278424
    [6] Rao Junfeng, Lei Yang, Jiang Song, et al. All solid-state rectangular sub-microsecond pulse generator for water treatment application[J]. IEEE Transactions on Plasma Science, 2018, 46(10): 3359-3363. doi: 10.1109/TPS.2018.2829206
    [7] Wei Linsheng, Yuan Dingkun, Zhang Yafang, et al. Experimental and theoretical study of ozone generation in pulsed positive dielectric barrier discharge[J]. Vacuum, 2014, 104: 61-64. doi: 10.1016/j.vacuum.2014.01.009
    [8] Tang Tao, Wang Fei, Kuthi A, et al. Diode opening switch based nanosecond high voltage pulse generators for biological and medical applications[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(4): 878-883. doi: 10.1109/TDEI.2007.4286519
    [9] Achour Y, Starzyński J, Rąbkowski J. Modular Marx generator based on SiC-MOSFET generating adjustable rectangular pulses[J]. Energies, 2021, 14: 3492. doi: 10.3390/en14123492
    [10] Rao Junfeng, Zhang Rui, Shi Fukun, et al. A high voltage solid state Marx generator with adjustable pulse edges[J]. High Voltage, 2023, 8(5): 878-888. doi: 10.1049/hve2.12311
    [11] Baker R J, Johnson B P. Series operation of power MOSFETs for high-speed, high-voltage switching applications[J]. Review of Scientific Instruments, 1993, 64(6): 1655-1656. doi: 10.1063/1.1144043
    [12] Hess H L, Baker R J. Transformerless capacitive coupling of gate signals for series operation of power MOS devices[J]. IEEE Transactions on Power Electronics, 2000, 15(5): 923-930. doi: 10.1109/63.867682
    [13] Li Rong, Qi Rong. The design of new compact Marx generator[J]. Chinese Journal of Electronics, 2018, 27(6): 1305-1308. doi: 10.1049/cje.2018.09.017
    [14] Zeng Weirong, Yao Chenguo, Dong Shoulong, et al. Self-triggering high-frequency nanosecond pulse generator[J]. IEEE Transactions on Power Electronics, 2020, 35(8): 8002-8012. doi: 10.1109/TPEL.2020.2967183
    [15] 饶俊峰, 汪文超, 石富坤, 等. 自触发驱动的双极性脉冲叠加器[J]. 高电压技术, 2023, 49(8):3258-3267

    Rao Junfeng, Wang Wenchao, Shi Fukun, et al. A self-triggering bipolar pulse adder[J]. High Voltage Engineering, 2023, 49(8): 3258-3267
    [16] 饶俊峰, 李恩成, 王永刚, 等. 自触发驱动的全固态Marx发生器[J]. 强激光与粒子束, 2021, 33:025001 doi: 10.11884/HPLPB202133.200223

    Rao Junfeng, Li Encheng, Wang Yonggang, et al. Self-triggering all-solid-state Marx generator[J]. High Power Laser and Particle Beams, 2021, 33: 025001 doi: 10.11884/HPLPB202133.200223
    [17] 陈杰, 梁华, 魏彪, 等. 参数化纳秒脉冲电源激励下表面介质阻挡放电特性[J]. 高电压技术, 2019, 45(10):3365-3374

    Chen Jie, Liang Hua, Wei Biao, et al. Discharge characteristics of surface dielectric barrier discharge driven by parameterized nanosecond pulsed power supply[J]. High Voltage Engineering, 2019, 45(10): 3365-3374
    [18] 李梦遥, 王歆昀, 赵昱雷, 等. 纳秒脉冲电压幅值和上升/下降沿时间对大气压氮气DBD均匀性的影响[J]. 高电压技术, 2024, 50(2):852-860

    Li Mengyao, Wang Xinyun, Zhao Yulei, et al. Influence of nanosecond pulse voltage amplitude and rising/falling edge time on the uniformity of atmospheric pressure N2 DBD[J]. High Voltage Engineering, 2024, 50(2): 852-860
    [19] Jayant Baliga B. Fundamentals of power semiconductor devices[M]. New York, NY, USA: Springer, 2008.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  28
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-10
  • 修回日期:  2024-12-31
  • 录用日期:  2024-12-31
  • 网络出版日期:  2025-01-17

目录

    /

    返回文章
    返回