Design of cavity power combiner with rotatable online decoupling system
-
摘要: 为方便粒子加速器用固态功率源设备在线更换维护,需要功率合成器具备在线可解耦的功能。腔式合成器由于其较高的功率容量成为功率合成的优选方案,但目前并未实现输入耦合度在线可调。为此,设计了一种带有可旋转解耦系统的650 MHz八合一腔式功率合成器。将非接触开路式扼流槽设置在射频输入端口,耦合环与腔体分离,实现磁耦合环可在线旋转调节,根据固态功率源工作状态来在线调节输入耦合度,以此来满足热插拔及调整合成效率的目的。仿真结果表明该合成器单级合成效率高,功率损耗小,且各输入端到输出端的幅度传输具有很好的一致性,最大偏差在0.25 dB以内。通过在线调节耦合度实现输入端口射频隔离,从而实现功放模块在线热插拔更换,极大的改善了功放模块的在线可维护性及灵活性。Abstract: To facilitate online replacement and maintenance of solid-state power sources in particle accelerators, a cavity power combiner with online decoupling capability is required. While cavity combiners offer high power capacity, adjustable input coupling has not been achievable online. Therefore, we designed a 650 MHz eight-in-one cavity power combiner with a rotatable decoupling system. By integrating non-contact open-circuit slits at the RF input port and separating the coupling loop from the cavity, we enabled online rotation adjustment of the magnetic coupling loop. This adjustment allows real-time tuning of input coupling according to the operational status of solid-state power sources, facilitating hot-swapping and efficiency optimization. Simulation results demonstrate high synthesis efficiency and minimal power loss, with excellent amplitude consistency between input and output ports (deviations within 0.25 dB). The ability to adjust coupling online enhances RF isolation at input ports, enabling seamless hot-swappable replacement of power amplifier modules and significantly improving maintainability and flexibility.
-
Key words:
- solid-state power source /
- cavity power combiner /
- hot-swappable /
- rotatable decoupling /
- power capacity
-
表 1 设计的腔式功率合成器等效电路参数及品质因数
Table 1. Equivalent circuit parameters and quality factor of designed cavity power combiner
$ {R}_{i\_1}'\left(\mathrm{\Omega }\right) $ $ {R}_{i\_2}'\left(\mathrm{\Omega }\right) $ $ {R}_{i\_3}'\left(\mathrm{\Omega }\right) $ $ {R}_{i\_4}'\left(\mathrm{\Omega }\right) $ $ {R}_{i\_5}'\left(\mathrm{\Omega }\right) $ $ {R}_{i\_6}'\left(\mathrm{\Omega }\right) $ $ {R}_{i\_7}'\left(\mathrm{\Omega }\right) $ $ {R}_{i\_8}'\left(\mathrm{\Omega }\right) $ $ {R}_{0}'\left(\mathrm{\Omega }\right) $ $ {R}_{c}\left(\mathrm{\Omega }\right) $ Q 484.79 480.72 474.02 472.1 472 474.02 480.7 484.8 59 5332.73 22793.9 -
[1] Chen Zhiqiang. Recent progress in nuclear data measurement for ADS at IMP[J]. Nuclear Science and Techniques, 2017, 28: 184. doi: 10.1007/s41365-017-0335-3 [2] Liu Shuhui, Wang Zhijun, Jia Huan, et al. Physics design of the CIADS 25 MeV demo facility[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 843: 11-17. [3] 曾凡剑, 何源, 孙列鹏, 等. 一种矩形腔式高功率合成器的设计[J]. 强激光与粒子束, 2019, 31:113006 doi: 10.11884/HPLPB201931.190176Zeng Fanjian, He Yuan, Sun Liepeng, et al. Design of a high power rectangular cavity power combiner[J]. High Power Laser and Particle Beams, 2019, 31: 113006 doi: 10.11884/HPLPB201931.190176 [4] Jacob J, Mercier J M, Langlois M, Gautier G. 352.2 MHz-150 kW solid state amplifiers at the ESRF[C]//Proceedings of IPAC2011. 2011: 71-73. [5] de la Morena C, Regidor D, Iriarte D, et al. First validation experiments of the prototype solid state RF system for IFMIF-DONES[J]. Fusion Engineering and Design, 2021, 168: 112396. doi: 10.1016/j.fusengdes.2021.112396 [6] Pan Chao, Shi Longbo, Wu Zhengrong, et al. Design and test of rack-integrated cavity combiner for China initiative accelerator driven system project[J]. Review of Scientific Instruments, 2023, 94: 123305. doi: 10.1063/5.0184908 [7] Liu Yongtao, Huang Guirong, Shang Lei. A method for designing a variable-channel high-power cavity combiner[J]. Chinese Physics C, 2016, 40: 087002. doi: 10.1088/1674-1137/40/8/087002 [8] 钟胡天翔, 朱凤, 全胜文, 等. 加速100 mA质子束的低β超导半波长谐振腔内的高阶模(英文)[J]. 强激光与粒子束, 2017, 29:085102 doi: 10.11884/HPLPB201729.170070Zhonghu Tianxiang, Zhu Feng, Quan Shengwen, et al. High order modes in low beta SRF half wave resonator cavity for 100 mA proton acceleration[J]. High Power Laser and Particle Beams, 2017, 29: 085102 doi: 10.11884/HPLPB201729.170070 [9] 姚晔. 接触式波导旋转关节结构设计[J]. 电子机械工程, 2007, 23(1):42-44 doi: 10.3969/j.issn.1008-5300.2007.01.012Yao Ye. Structure design of R. F. contact type waveguide junction[J]. Electro-Mechanical Engineering, 2007, 23(1): 42-44 doi: 10.3969/j.issn.1008-5300.2007.01.012 [10] 程海荣, 何明, 华光, 等. 一种宽带非接触式同轴旋转关节的设计与仿真[J]. 雷达与对抗, 2009, 29(3):53-56Cheng Hairong, He Ming, Hua Guang, et al. The design and simulation of a wideband non-contact coaxial rotary joint[J]. Radar & ECM, 2009, 29(3): 53-56 -