留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带有可旋转在线解耦系统的腔式功率合成器设计

江国栋 施龙波 孙列鹏 金珂安 吴峥嵘 潘超 黄贵荣 何源

江国栋, 施龙波, 孙列鹏, 等. 带有可旋转在线解耦系统的腔式功率合成器设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240257
引用本文: 江国栋, 施龙波, 孙列鹏, 等. 带有可旋转在线解耦系统的腔式功率合成器设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240257
Jiang Guodong, Shi Longbo, Sun Liepeng, et al. Design of cavity power combiner with rotatable online decoupling system[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240257
Citation: Jiang Guodong, Shi Longbo, Sun Liepeng, et al. Design of cavity power combiner with rotatable online decoupling system[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240257

带有可旋转在线解耦系统的腔式功率合成器设计

doi: 10.11884/HPLPB202537.240257
基金项目: 大型科学装置加速器驱动嬗变研究装置(2017-000052-75-01-000590)
详细信息
    作者简介:

    江国栋,jianggd@impcas.ac.cn

    通讯作者:

    孙列鹏,sunlp@impcas.ac.cn

  • 中图分类号: TN99

Design of cavity power combiner with rotatable online decoupling system

  • 摘要: 为方便粒子加速器用固态功率源设备在线更换维护,需要功率合成器具备在线可解耦的功能。腔式合成器由于其较高的功率容量成为功率合成的优选方案,但目前并未实现输入耦合度在线可调。为此,设计了一种带有可旋转解耦系统的650 MHz八合一腔式功率合成器。将非接触开路式扼流槽设置在射频输入端口,耦合环与腔体分离,实现磁耦合环可在线旋转调节,根据固态功率源工作状态来在线调节输入耦合度,以此来满足热插拔及调整合成效率的目的。仿真结果表明该合成器单级合成效率高,功率损耗小,且各输入端到输出端的幅度传输具有很好的一致性,最大偏差在0.25 dB以内。通过在线调节耦合度实现输入端口射频隔离,从而实现功放模块在线热插拔更换,极大的改善了功放模块的在线可维护性及灵活性。
  • 图  1  N路腔式合成器等效电路图

    Figure  1.  Equivalent circuit diagram of N-channel cavity combiner

    图  2  输入耦合度$ \;{ \beta }_{i} $与合成效率的关系

    Figure  2.  The relationship between input coupling coefficient $ \;{ \beta }_{i} $ and combining efficiency

    图  3  扼流结构示意图

    Figure  3.  Choke structure schematic diagram

    图  4  扼流槽内电压电流分布

    Figure  4.  Voltage and current distribution within the choke slot

    图  5  带输入解耦的矩形腔式功率合成器电气模型

    Figure  5.  Electrical model of a rectangular cavity power combiner with input decoupling

    图  6  输出和输入耦合器结构示意

    Figure  6.  Schematic of output and input coupler structure

    图  7  输出和输入耦合器耦合度度分别随输出内馈插入腔体内部的深度d2和d1的变化

    Figure  7.  The coupling coefficient of the output and input coupler changes with the depth of the infeed inserted into the cavity

    图  8  输入耦合器旋转角度调节

    Figure  8.  Adjustment of input coupler rotation angle

    图  9  矩形腔式功率合成器内电场分布

    Figure  9.  Electric field distribution within a rectangular cavity power combiner

    图  10  各端口到输出端口的信号幅度传输

    Figure  10.  Signal amplitude transmission from each port to the output

    图  11  各端口到输出端口的信号相位传输

    Figure  11.  Signal phase transmission from each port to the output

    图  12  各输入端口的信号幅度传输

    Figure  12.  Transmission between the input ports

    图  13  单端口失效时输入端口至输出端口的传输参数

    Figure  13.  Transmission coefficients for N-channel combiner with one port failure

    图  14  输入耦合器结构设计

    Figure  14.  Structural design of the input coupler

    图  15  功率合成器输入旋转结构设计

    Figure  15.  Design of the rotating structure for the power combiner input

    表  1  设计的腔式功率合成器等效电路参数及品质因数

    Table  1.   Equivalent circuit parameters and quality factor of designed cavity power combiner

    $ {R}_{i\_1}'\left(\mathrm{\Omega }\right) $$ {R}_{i\_2}'\left(\mathrm{\Omega }\right) $$ {R}_{i\_3}'\left(\mathrm{\Omega }\right) $$ {R}_{i\_4}'\left(\mathrm{\Omega }\right) $$ {R}_{i\_5}'\left(\mathrm{\Omega }\right) $$ {R}_{i\_6}'\left(\mathrm{\Omega }\right) $$ {R}_{i\_7}'\left(\mathrm{\Omega }\right) $$ {R}_{i\_8}'\left(\mathrm{\Omega }\right) $$ {R}_{0}'\left(\mathrm{\Omega }\right) $$ {R}_{c}\left(\mathrm{\Omega }\right) $Q
    484.79480.72474.02472.1472474.02480.7484.8595332.7322793.9
    下载: 导出CSV
  • [1] Chen Zhiqiang. Recent progress in nuclear data measurement for ADS at IMP[J]. Nuclear Science and Techniques, 2017, 28: 184. doi: 10.1007/s41365-017-0335-3
    [2] Liu Shuhui, Wang Zhijun, Jia Huan, et al. Physics design of the CIADS 25 MeV demo facility[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 843: 11-17.
    [3] 曾凡剑, 何源, 孙列鹏, 等. 一种矩形腔式高功率合成器的设计[J]. 强激光与粒子束, 2019, 31:113006 doi: 10.11884/HPLPB201931.190176

    Zeng Fanjian, He Yuan, Sun Liepeng, et al. Design of a high power rectangular cavity power combiner[J]. High Power Laser and Particle Beams, 2019, 31: 113006 doi: 10.11884/HPLPB201931.190176
    [4] Jacob J, Mercier J M, Langlois M, Gautier G. 352.2 MHz-150 kW solid state amplifiers at the ESRF[C]//Proceedings of IPAC2011. 2011: 71-73.
    [5] de la Morena C, Regidor D, Iriarte D, et al. First validation experiments of the prototype solid state RF system for IFMIF-DONES[J]. Fusion Engineering and Design, 2021, 168: 112396. doi: 10.1016/j.fusengdes.2021.112396
    [6] Pan Chao, Shi Longbo, Wu Zhengrong, et al. Design and test of rack-integrated cavity combiner for China initiative accelerator driven system project[J]. Review of Scientific Instruments, 2023, 94: 123305. doi: 10.1063/5.0184908
    [7] Liu Yongtao, Huang Guirong, Shang Lei. A method for designing a variable-channel high-power cavity combiner[J]. Chinese Physics C, 2016, 40: 087002. doi: 10.1088/1674-1137/40/8/087002
    [8] 钟胡天翔, 朱凤, 全胜文, 等. 加速100 mA质子束的低β超导半波长谐振腔内的高阶模(英文)[J]. 强激光与粒子束, 2017, 29:085102 doi: 10.11884/HPLPB201729.170070

    Zhonghu Tianxiang, Zhu Feng, Quan Shengwen, et al. High order modes in low beta SRF half wave resonator cavity for 100 mA proton acceleration[J]. High Power Laser and Particle Beams, 2017, 29: 085102 doi: 10.11884/HPLPB201729.170070
    [9] 姚晔. 接触式波导旋转关节结构设计[J]. 电子机械工程, 2007, 23(1):42-44 doi: 10.3969/j.issn.1008-5300.2007.01.012

    Yao Ye. Structure design of R. F. contact type waveguide junction[J]. Electro-Mechanical Engineering, 2007, 23(1): 42-44 doi: 10.3969/j.issn.1008-5300.2007.01.012
    [10] 程海荣, 何明, 华光, 等. 一种宽带非接触式同轴旋转关节的设计与仿真[J]. 雷达与对抗, 2009, 29(3):53-56

    Cheng Hairong, He Ming, Hua Guang, et al. The design and simulation of a wideband non-contact coaxial rotary joint[J]. Radar & ECM, 2009, 29(3): 53-56
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  10
  • HTML全文浏览量:  6
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-12
  • 修回日期:  2025-03-28
  • 录用日期:  2025-03-25
  • 网络出版日期:  2025-04-27

目录

    /

    返回文章
    返回