留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自抗扰控制的共振磁扰动线圈电源研究

江钱 高格 汪舒生 叶贝

江钱, 高格, 汪舒生, 等. 基于自抗扰控制的共振磁扰动线圈电源研究[J]. 强激光与粒子束, 2025, 37: 035024. doi: 10.11884/HPLPB202537.240263
引用本文: 江钱, 高格, 汪舒生, 等. 基于自抗扰控制的共振磁扰动线圈电源研究[J]. 强激光与粒子束, 2025, 37: 035024. doi: 10.11884/HPLPB202537.240263
Jiang Qian, Gao Ge, Wang Shusheng, et al. Research on resonant magnetic perturbation coil power supply based on active disturbance rejection control[J]. High Power Laser and Particle Beams, 2025, 37: 035024. doi: 10.11884/HPLPB202537.240263
Citation: Jiang Qian, Gao Ge, Wang Shusheng, et al. Research on resonant magnetic perturbation coil power supply based on active disturbance rejection control[J]. High Power Laser and Particle Beams, 2025, 37: 035024. doi: 10.11884/HPLPB202537.240263

基于自抗扰控制的共振磁扰动线圈电源研究

doi: 10.11884/HPLPB202537.240263
基金项目: 磁约束聚变安徽省实验室开放基金项目(2024AMF04003)
详细信息
    作者简介:

    江 钱,JQ0227@mail.ustc.edu.cn

    通讯作者:

    汪舒生,wangss@ipp.ac.cn

  • 中图分类号: TL631.24

Research on resonant magnetic perturbation coil power supply based on active disturbance rejection control

  • 摘要: 针对托卡马克装置中共振磁扰动线圈电源采用传统PI控制器存在响应速度与超调之间的矛盾以及在复杂电磁环境下工作抗干扰能力差的问题,采用线性自抗扰控制策略,安排过渡过程提取参考信号的微分品质,从而实现快速无超调的电流输出。并基于电源系统部分已知数学模型参数,设计了四阶线性扩张状态观测器,估计系统干扰量作为系统新的状态量进行补偿,从而抑制了电源系统内部不确定因素和外部扰动。最后仿真结果表明:相较于采用传统PI控制策略,自抗扰控制策略能够有效提高输出电流信号的动态特性;同时在复杂环境扰动情况下具有更强的鲁棒性和抗干扰特性。
  • 图  1  DⅢ-D托卡马克RMP线圈电源拓扑图

    Figure  1.  RMP coil power topology of DⅢ-D tokamak

    图  2  RMP线圈电源输出结构图

    Figure  2.  RMP coil power output structure

    图  3  四阶线性自抗扰模型

    Figure  3.  Diagram of fourth order linear active disturbance rejection

    图  4  不同$ {w_{\text{c}}} $情况下的电源系统闭环伯德图

    Figure  4.  Closed-loop Bode diagram of power system under different $ {w_{\mathrm{c}}} $ conditions

    图  5  直流母线处模拟不同频率扰动

    Figure  5.  Different frequency perturbations are simulated at the DC bus

    图  6  模拟负载侧突变扰动

    Figure  6.  Simulate load side mutation

    图  7  输出处模拟瞬时测量误差扰动

    Figure  7.  Simulated sensor measurement error at output

  • [1] Sun Youwen, Liang Yunfeng, Qian Jialai, et al. Modeling of non-axisymmetric magnetic perturbations in tokamaks[J]. Plasma Physics and Controlled Fusion, 2015, 57: 045003. doi: 10.1088/0741-3335/57/4/045003
    [2] Wang Huihui, Sun Youwen, Qian Jinping, et al. Observation of spectrum effect on the measurement of intrinsic error field on EAST[J]. Nuclear Fusion, 2016, 56: 066011. doi: 10.1088/0029-5515/56/6/066011
    [3] 韩京清. 自抗扰控制技术[J]. 前沿科学, 2007(1):24-31 doi: 10.3969/j.issn.1673-8128.2007.01.004

    Han Jingqing. Auto disturbances rejection control technique[J]. Frontier Science, 2007(1): 24-31 doi: 10.3969/j.issn.1673-8128.2007.01.004
    [4] Jin Huiyu, Chen Yang, Lan Weiyao. Replacing PI control with first-order linear ADRC[C]//IEEE 8th Data Driven Control and Learning Systems Conference. 2019: 1097-1101.
    [5] Zhang Han, Zhao Shen, Gao Zhiiqiang. An active disturbance rejection control solution for the two-mass-spring benchmark problem[C]//Proceedings of American Control Conference. 2016: 1566-1571.
    [6] 黄海宏, 颜碧琛, 王海欣. 并联级联H桥电源电流跟踪优化与环流抑制的模型预测控制[J]. 电工技术学报, 2023, 38(16):4376-4390

    Huang Haihong, Yan Bichen, Wang Haixin. Model predictive control of current tracking optimization and circulating current suppression for multi-parallel cascaded H-bridge power supplies[J]. Transactions of China Electrotechnical Society, 2023, 38(16): 4376-4390
    [7] Han Jingqing. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900-906. doi: 10.1109/TIE.2008.2011621
    [8] Wang Zhenshang, Huang Liansheng, Fu Peng, et al. Analysis and improved control strategy for new generation Poloidal field power supply[J]. IEEE Transactions on Plasma Science, 2022, 50(11): 4393-4400. doi: 10.1109/TPS.2022.3172836
    [9] Jiang Qian, Gao Ge, Wang Shusheng, et al. Design and analysis of a pulsed coil power supply for the DIII-D tokamak[J]. Fusion Engineering and Design, 2023, 194: 113740. doi: 10.1016/j.fusengdes.2023.113740
    [10] 宋德勇, 高格, 傅鹏, 等. 单相逆变电源输出侧RC补偿支路的设计[J]. 电力电子技术, 2017, 51(10):36-37,49

    Song Deyong, Gao Ge, Fu Peng, et al. Design of RC compensation branch at output side for a single-phase inverter[J]. Power Electronics, 2017, 51(10): 36-37,49
    [11] 张超, 朱纪洪, 高亚奎. 自抗扰控制器的阶次与参数的选取[J]. 控制理论与应用, 2014, 31(11):1480-1485 doi: 10.7641/CTA.2014.40055

    Zhang Chao, Zhu Jihong, Gao Yakui. Order and parameter selections for active disturbance rejection controller[J]. Control Theory & Applications, 2014, 31(11): 1480-1485 doi: 10.7641/CTA.2014.40055
    [12] 梁青, 王传榜, 潘金文, 等. 线性自抗扰控制参数b0辨识及参数整定规律[J]. 控制与决策, 2015, 30(9):1691-1695

    Liang Qing, Wang Chuanbang, Pan Jinwen, et al. Parameter identification of b0 and parameter tuning law in linear active disturbance rejection control[J]. Control and Decision, 2015, 30(9): 1691-1695
    [13] 母东杰, 郝河, 蔡会, 等. 基于跟踪微分器的伺服系统抗干扰特性仿真研究[J]. 机电工程技术, 2024, 53(5):46-49,195 doi: 10.3969/j.issn.1009-9492.2024.05.011

    Mu Dongjie, Hao He, Cai Hui, et al. Resarch on simulation of anti-disturbance characteristics of servo system based on tracking differentiator[J]. Mechanical & Electrical Engineering Technology, 2024, 53(5): 46-49,195 doi: 10.3969/j.issn.1009-9492.2024.05.011
    [14] 袁东, 马晓军, 曾庆含, 等. 二阶系统线性自抗扰控制器频带特性与参数配置研究[J]. 控制理论与应用, 2013, 30(12):1630-1640 doi: 10.7641/CTA.2013.30424

    Yuan Dong, Ma Xiaojun, Zeng Qinghan, et al. Research on frequency-band characteristics and parameters configuration of linear active disturbance rejection control for second-order systems[J]. Control Theory & Applications, 2013, 30(12): 1630-1640 doi: 10.7641/CTA.2013.30424
    [15] Cao Yongfeng, Zhao Qiangsong, Ye Yongqiang, et al. ADRC-based current control for grid-tied inverters: design, analysis, and verification[J]. IEEE Transactions on Industrial Electronics, 2020, 67(10): 8428-8437. doi: 10.1109/TIE.2019.2949513
    [16] Guo Baoling, Bacha S, Alamir M, et al. Generalized integrator-extended state observer with applications to grid-connected converters in the presence of disturbances[J]. IEEE Transactions on Control Systems Technology, 2021, 29(2): 744-755. doi: 10.1109/TCST.2020.2981571
  • 加载中
图(7)
计量
  • 文章访问数:  176
  • HTML全文浏览量:  63
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-14
  • 修回日期:  2024-12-25
  • 录用日期:  2024-12-25
  • 网络出版日期:  2025-02-11
  • 刊出日期:  2025-03-15

目录

    /

    返回文章
    返回