留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于加速器DD中子源的钇活化探测系统效率原位标定

张一镆 杨彪 彭星宇 胡青元 朱学彬 游海波 章法强 彭太平

张一镆, 杨彪, 彭星宇, 等. 基于加速器DD中子源的钇活化探测系统效率原位标定[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240265
引用本文: 张一镆, 杨彪, 彭星宇, 等. 基于加速器DD中子源的钇活化探测系统效率原位标定[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240265
Zhang Yimo, Yang Biao, Peng Xingyu, et al. In-situ calibration of the efficiency of a yttrium activation detection system by the accelerator-based DD fusion neutron source[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240265
Citation: Zhang Yimo, Yang Biao, Peng Xingyu, et al. In-situ calibration of the efficiency of a yttrium activation detection system by the accelerator-based DD fusion neutron source[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240265

基于加速器DD中子源的钇活化探测系统效率原位标定

doi: 10.11884/HPLPB202537.240265
基金项目: 国家自然科学基金项目(12105263, 12205266, 12305206)
详细信息
    作者简介:

    张一镆,zhangym.caep@foxmail.com

    通讯作者:

    胡青元,huqyuan@163.com

  • 中图分类号: TL816.3

In-situ calibration of the efficiency of a yttrium activation detection system by the accelerator-based DD fusion neutron source

  • 摘要: 在包括激光惯性约束聚变(ICF)、Z箍缩及稠密等离子聚焦(DPF)等脉冲聚变装置上,活化法作为中子通量测量与产额诊断的手段,得到了广泛的应用。利用无机闪烁体探测器,测量89Y核与中子非弹散反应产生的909 keV的单能伽马射线,可以实现DD中子通量的准确测量。采用金属钇作为活化靶,利用LaBr3:Ce闪烁体伽马探测器建立了中子活化原位探测系统。针对钇活化核半衰期仅有15.663 s的特点,对其在连续束流辐照下的累积过程进行了物理分析,建立了通过加速器DD中子源进行入射中子探测效率标定的实验方法。实验中,利用伽马探测器兼顾中子通量监测与活化伽马测量,模拟了钇靶活度随中子通量变化的过程,实现了该活化探测系统对入射中子探测效率的原位标定。
  • 图  1  LaBr3:Ce伽马探测器在远离束流靶头与靠近束流靶头两种情况下所测本底脉冲高度谱

    Figure  1.  Pulse height spectra measured when the detector is close to the target (orange) and away from the target (blue)

    图  2  标定实验排布示意图

    Figure  2.  Experimental setup

    图  3  两种测量条件下获得的时间-脉冲高度二维事件分布

    Figure  3.  Time-PSD distribution of the events measured under different conditions

    图  4  无钇靶情况下探测器记录事件的计数率变化

    Figure  4.  Count rates of the events measured when no yttrium disk is installed

    图  5  两种厚度钇靶情况下,根据测量结果还原靶片上中子通量变化

    Figure  5.  Using the yttrium disks with two different thickness, the neutron fluxes are reconstructed from the measurements

    图  6  不同初始活度下,对钇靶活度变化的模拟

    Figure  6.  Simulated of the radioactivation of the yttrium disk varieds with time

    图  7  取不同的时间单元,对钇靶活度变化的模拟

    Figure  7.  Simulation of the radioactivation of the yttrium disk for different time bin width

    图  8  停束后,QDC值在[1800, 2200]的事件计数率变化

    Figure  8.  Count rates of the events of which the QDC values are between 1800 and 2200

    图  9  停束后,连续两段50 s测量时间累计事件的脉冲高度谱

    Figure  9.  Pulse height spectra of the two time periold

    表  1  两种靶厚的中子活化探测系统标定结果

    Table  1.   Results of calibration with 2 different thickness of the yttrium disk

    No. thickness/mm n1 n2 ϕn(t0)/s−1 η
    1 10 11196 8047 6.09×105 2.29×10−4
    2 20 12832 7594 7.25×105 3.20×10−4
    下载: 导出CSV
  • [1] Frenje J A. Nuclear diagnostics for Inertial Confinement Fusion (ICF) plasmas[J]. Plasma Physics and Controlled Fusion, 2020, 62: 023001. doi: 10.1088/1361-6587/ab5137
    [2] Wang Feng, Jiang Shaoen, Ding Yongkun, et al. Recent diagnostic developments at the 100 kJ-level laser facility in China[J]. Matter and Radiation at Extremes, 2020, 5: 035201. doi: 10.1063/1.5129726
    [3] Bionta R M, Grim G P, Hahn K D, et al. Real-time nuclear activation detectors for measuring neutron angular distributions at the National Ignition Facility[J]. Review of Scientific Instruments, 2021, 92: 043527. doi: 10.1063/5.0042869
    [4] Cikhardt J, Klir D, Shishlov A V, et al. Neutron fluence distribution in experiments with 3 MA deuterium gas-puff z-pinch[J]. Physics of Plasmas, 2020, 27: 072705. doi: 10.1063/5.0008108
    [5] Hahn K D, Chandler G A, Ruiz C L, et al. Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator[J]. Journal of Physics: Conference Series, 2016, 717: 012020.
    [6] Springham S V, Verma R, Zaw M S N, et al. Plasma focus neutron energy and anisotropy measurements using zirconium–beryllium pair activation detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 988: 164830. doi: 10.1016/j.nima.2020.164830
    [7] Cooper G W, Ruiz C L. NIF total neutron yield diagnostic[J]. Review of Scientific Instruments, 2001, 72(1): 814-817.
    [8] Hahn K D, Cooper G W, Ruiz C L, et al. Fusion-neutron-yield, activation measurements at the Z accelerator: design, analysis, and sensitivity[J]. Review of Scientific Instruments, 2014, 85: 043507. doi: 10.1063/1.4870779
    [9] Jednorog S, Laszynska E, Batistoni P, et al. Activation measurements in support of the 14 MeV neutron calibration of JET neutron monitors[J]. Fusion Engineering and Design, 2017, 125: 50-56. doi: 10.1016/j.fusengdes.2017.10.024
    [10] Cheon M S, Kim C S, Cho S, et al. Investigation of the capsule detection method at the irradiation end of the ITER neutron activation system[J]. Journal of the Korean Physical Society, 2021, 78(7): 574-579. doi: 10.1007/s40042-021-00083-5
    [11] 宋仔峰, 陈家斌, 唐琦, 等. 氘氘中子产额铟活化诊断方法[J]. 强激光与粒子束, 2012, 24(5):1165-1168 doi: 10.3788/HPLPB20122405.1165

    Song Zifeng, Chen Jiabin, Tang Qi, et al. DD neutron yield diagnosis by indium activation[J]. High Power Laser and Particle Beams, 2012, 24(5): 1165-1168 doi: 10.3788/HPLPB20122405.1165
    [12] Li Kai, Hu Liqun, Zhong Guoqiang, et al. Development of neutron activation system on EAST[J]. Review of Scientific Instruments, 2020, 91: 013503.
    [13] Ruiz C L, Styron J D, Fehl D L, et al. Novel beryllium-scintillator, neutron-fluence detector for magnetized liner inertial fusion experiments[J]. Physical Review Accelerators and Beams, 2019, 22: 042901. doi: 10.1103/PhysRevAccelBeams.22.042901
    [14] Roshan M V, Springham S V, Rawat R S, et al. Absolute measurements of fast neutrons using yttrium[J]. Review of Scientific Instruments, 2010, 81: 083506. doi: 10.1063/1.3478020
    [15] Jednorog S, Szydlowski A, Bienkowska B, et al. The application of selected radionuclides for monitoring of the D–D reactions produced by dense plasma-focus device[J]. Journal of Radioanalytical and Nuclear Chemistry, 2014, 301(1): 23-31. doi: 10.1007/s10967-014-3131-0
    [16] Song Zifeng, Chen Jiabin, Liu Zhongjie, et al. The calibration of the DD neutron indium activation diagnostic[J]. Plasma Science and Technology, 2015, 17(4): 337-339. doi: 10.1088/1009-0630/17/4/14
    [17] Li Kai, Hu Liqun, Zhong Guoqiang, et al. Calibration of the gamma-ray measurement procedure in the EAST neutron activation system[J]. Fusion Engineering and Design, 2019, 148: 111278.
    [18] Jednorog S, Laszynska E, Bienkowska B, et al. A new concept of fusion neutron monitoring for PF-1000 device[J]. Nukleonika, 2017, 62(1): 17-22. doi: 10.1515/nuka-2017-0003
    [19] 李凯. 基于铟硅活化法的EAST聚变中子产额诊断研究[D]. 合肥: 中国科学技术大学, 2020: 25-28

    Li Kai. Research of EAST fusion neutron yield diagnostic based on indium and silicon activation method[D]. Hefei: University of Science and Technology of China, 2020: 25-28
    [20] 朱通华, 刘荣, 蒋励, 等. D-D中子源产额的大角度伴随质子监测技术研究[J]. 核电子学与探测技术, 2007, 27(1):141-144,166 doi: 10.3969/j.issn.0258-0934.2007.01.038

    Zhu Tonghua, Liu Rong, Jiang Li, et al. The associated proton monitoring technique study of D-D source neutron yields at the large angle[J]. Nuclear Electronics & Detection Technology, 2007, 27(1): 141-144,166 doi: 10.3969/j.issn.0258-0934.2007.01.038
    [21] Cazzaniga C, Nocente M, Tardocchi M, et al. Response of LaBr3(Ce) scintillators to 2.5 MeV fusion neutrons[J]. Review of Scientific Instruments, 2013, 84: 123505. doi: 10.1063/1.4847056
    [22] Xi Hao, Liang Chuan, Zhang F Q, et al. A pulse current generator for dense plasma focus[J]. Journal of Instrumentation, 2021, 16: P12021. doi: 10.1088/1748-0221/16/12/P12021
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  35
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-15
  • 修回日期:  2024-11-09
  • 录用日期:  2024-11-09
  • 网络出版日期:  2024-11-21

目录

    /

    返回文章
    返回