留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高通量激光装置真空系统洁净度控制

吴文龙 林东晖 牛龙飞 熊迁 王振国 刘建国 陈文棋 吴悦 刘勇 王琳 姚轲 陈林

吴文龙, 林东晖, 牛龙飞, 等. 高通量激光装置真空系统洁净度控制[J]. 强激光与粒子束, 2025, 37: 012002. doi: 10.11884/HPLPB202537.240266
引用本文: 吴文龙, 林东晖, 牛龙飞, 等. 高通量激光装置真空系统洁净度控制[J]. 强激光与粒子束, 2025, 37: 012002. doi: 10.11884/HPLPB202537.240266
Wu Wenlong, Lin Donghui, Niu Longfei, et al. Cleanliness control of vacuum system in high-flux laser device[J]. High Power Laser and Particle Beams, 2025, 37: 012002. doi: 10.11884/HPLPB202537.240266
Citation: Wu Wenlong, Lin Donghui, Niu Longfei, et al. Cleanliness control of vacuum system in high-flux laser device[J]. High Power Laser and Particle Beams, 2025, 37: 012002. doi: 10.11884/HPLPB202537.240266

高通量激光装置真空系统洁净度控制

doi: 10.11884/HPLPB202537.240266
基金项目: 中国工程物理研究院激光聚变研究中心青年人才基金项目(RCFPD6-2022-7)
详细信息
    作者简介:

    吴文龙,wwl803sc@caep.cn

    通讯作者:

    陈 林,283440697@qq.com

  • 中图分类号: TN248.1;O368

Cleanliness control of vacuum system in high-flux laser device

  • 摘要: 在高通量激光装置真空系统运行过程中,泵组润滑油在真空环境下产生的分子污染可能扩散沉积在光学系统元件表面,在高通量激光辐照下诱导损伤,降低光学元件负载能力。针对真空系统洁净度控制开展研究,构建了包括真空泵组优化、增加低温冷阱吸附、增加冷阱在线加热再生工艺的真空系统洁净度控制方法。实验研究结果表明:真空系统经过120 h连续运行后,平均24 h非挥发性残留物表面沉积量维持在2.86×10−9 g/cm2洁净水平,熔石英光学试片考核组和对照组在350 nm处的透过率以及12.3 J/cm2通量以下的损伤密度曲线基本一致,证明了该方法的有效性。
  • 图  1  原装置抽真空光学元件透过率考核数据

    Figure  1.  Data on transmittance of optical components in original facility with vacuum pumping

    图  2  原装置抽真空光学元件损伤密度考核数据

    Figure  2.  Data on damage density of optical components in original facility with vacuum pumping

    图  3  冷阱结构示意图

    Figure  3.  Schematic diagram of cold trap structure

    图  4  冷阱温度场分布图

    Figure  4.  Temperature field distribution of cold trap

    图  5  冷阱在线加热再生工艺流程图

    Figure  5.  Cold trap online heating regeneration process flowchart

    图  6  真空洁净验证实验系统结构原理图

    Figure  6.  Structural schematic diagram of vacuum clean liness validation experimental system

    图  7  光学试片紫外段透过率变化对比曲线

    Figure  7.  Comparison curve of transmittance changes in the ultraviolet range of optical test pieces

    图  8  不同分组光学试片损伤密度实验结果

    Figure  8.  Experimental results of damage density of optical test pieces in different groups

    表  1  考核组和对照组条件对比

    Table  1.   Comparison of conditions between the assessment group and the control group

    optical component group conditions
    control group placed vertically in a PTFE storage box in a class 100 laboratory, at atmospheric pressure, room temperature, and relative humidity of 60%
    static assessment
    group
    placed vertically in the pipeline of vacuum clean validation experimental system in a class 10000 laboratory, the vacuum unit and cold trap are not running, at atmospheric pressure, room temperature, and relative humidity of 60%
    dynamic assessment
    group
    placed vertically in the pipeline of vacuum clean validation experimental system in a class 10000 laboratory, the vacuum unit and cold trap are running,with a vacuum degree of 4.0 × 10−1 Pa and a working temperature of −100 ℃ for the cold trap
    下载: 导出CSV

    表  2  非挥发性残留物表面沉积量实验结果

    Table  2.   Experimental results of surface deposition of non-volatile residues

    optical component group total surface deposition of non-volatile
    residues after 120 h/(g·cm−2
    average surface deposition of non-volatile
    residues over 24 h/(g·cm−2
    static assessment group 2.20×10−9 4.40×10−10
    dynamic assessment group 1.43×10−8 2.86×10−9
    下载: 导出CSV
  • [1] Manes K R, Spaeth M L, Adams J J, et al. Damage mechanisms avoided or managed for NIF large optics[J]. Fusion Science and Technology, 2016, 69(1): 146-249. doi: 10.13182/FST15-139
    [2] Nicolaizeau M, Miquel J L. LMJ status: fifth bundle commissioning and PW class laser coupling[C]//Proceedings of SPIE 10898, High Power Lasers for Fusion Research V. 2019: 1089802.
    [3] Bass M. When everything damaged and we didn’t know why[C]//Proceedings of SPIE 10805, Laser-Induced Damage in Optical Materials 2018: 50th Anniversary Conference. 2018: 1080504.
    [4] 许彬, 李斌成, 高椿明, 等. 真空环境下低损耗高反射光学元件性能退化特性[J]. 激光技术, 2020, 44(6):768-772

    Xu Bin, Li Bincheng, Gao Chunming, et al. Performance degradation of low-loss highly-reflective mirrors under vacuum environment[J]. Laser Technology, 2020, 44(6): 768-772
    [5] Pryatel J A, Gourdin W H, Frieders S C, et al. Cleaning practices and facilities for the National Ignition Facility (NIF)[C]//Proceedings of SPIE 9237, Laser-Induced Damage in Optical Materials. 2014: 92372H.
    [6] 焦子龙, 庞贺伟, 易忠, 等. 卫星真空热试验污染物成分分析[J]. 航天器环境工程, 2009, 26(3):240-243

    Jiao Zilong, Pang Hewei, Yi Zhong, et al. The identification of molecular contaminant in thermal vacuum test[J]. Spacecraft Environment Engineering, 2009, 26(3): 240-243
    [7] 张洪波, 刘天雄, 李长江. 卫星热真空试验微波开关分子污染防护研究[J]. 航天器工程, 2011, 20(5):125-130

    Zhang Hongbo, Liu Tianxiong, Li Changjiang. Research on prevention of molecular contamination of microwave switches in thermal vacuum test for satellite[J]. Spacecraft Engineering, 2011, 20(5): 125-130
    [8] 刘天雄, 罗成, 朱剑涛, 等. 热真空试验中分子污染敏感单机的失效机理及对策[J]. 航天器工程, 2014, 23(1):47-52

    Liu Tianxiong, Luo Cheng, Zhu Jiantao, et al. Failure mechanism and countermeasure of unit sensitive to molecular contamination in thermal vacuum test[J]. Spacecraft Engineering, 2014, 23(1): 47-52
    [9] 焦子龙, 姜利祥, 孙继鹏, 等. 空间光学系统真空热试验污染控制经验综述[J]. 航天器环境工程, 2015, 32(4):445-450 doi: 10.12126/see.2015.04.020

    Jiao Zilong, Jiang Lixiang, Sun Jipeng, et al. Overview of contamination controls for space-based optical systems in thermal vacuum tests[J]. Spacecraft Environment Engineering, 2015, 32(4): 445-450 doi: 10.12126/see.2015.04.020
    [10] 焦子龙, 姜利祥, 孙继鹏, 等. 星载激光雷达系统污染增强损伤效应及防护试验研究[J]. 航天器环境工程, 2017, 34(4):419-423

    Jiao Zilong, Jiang Lixiang, Sun Jipeng, et al. Tests for contamination enhanced and laser-induced damage in spaceborne lidar system and its prevention[J]. Spacecraft Environment Engineering, 2017, 34(4): 419-423
    [11] Pryatel J A, Gourdin W H, Hampton G J, et al. Qualification of materials for applications in high fluence lasers[C]//Proceedings of SPIE 6403, Laser-Induced Damage in Optical Materials. 2007: 640329.
    [12] 牛龙飞, 尤辉, 吕海兵, 等. 激光系统用密封圈除气对真空光学元件性能影响[J]. 强激光与粒子束, 2023, 35:061004 doi: 10.11884/HPLPB202335.220390

    Niu Longfei, You Hui, Lü Haibing, et al. Influence of vacuum baking O-rings on optical properties of laser system[J]. High Power Laser and Particle Beams, 2023, 35: 061004 doi: 10.11884/HPLPB202335.220390
    [13] 赵飞, 张晓妹, 刘鸣, 等. 多重接触式静密封泄漏特性定量分析模型[J]. 机械工程师, 2022(12):45-17,50

    Zhao Fei, Zhang Xiaomei, Liu Ming, et al. Quantitative analysis model for leakage characteristics of multi-contact static seal[J]. Mechanical Engineer, 2022(12): 45-17,50
    [14] Henrist M, Cucchiaro A, Domken I, et al. The space simulation facilities at IAL SPACE[C]//Proceedings of 16th Space Simulation Conference Confirming Spaceworthiness Into the Next Millennium. 1990: 314-322.
    [15] Straka S, Peters W, Hasegawa M, et al. Development of molecular adsorber coatings[C]//Proceedings of SPIE 7794, Optical System Contamination: Effects, Measurements, and Control 2010. 2010: 77940C.
    [16] Miller P E, Thorsness C B, Ertel J, et al. Use of silica gel as a getter for the protection of sol-gel coated optics: concept verification[R]. Livermore: Lawrence Livermore National Lab. , 2014.
    [17] 王先荣, 颜则东. 分子凝结与凝结表面温度的关系机理研究[J]. 宇航学报, 2004, 25(3):327-329

    Wang Xianrong, Yan Zedong. The mechanism research upon the relationship between molecular condensation and sensitive surface temperature[J]. Journal of Astronautics, 2004, 25(3): 327-329
    [18] 杨东升, 臧卫国, 于钱. 低温石英天平在材料放气污染特性测试中的应用[J]. 航天器环境工程, 2005, 22(5):300-303 doi: 10.3969/j.issn.1673-1379.2005.05.011

    Yang Dongsheng, Zang Weiguo, Yu Qian. Application of low temperature QCM to outgassing contamination characteristics detection of spacecraft materials[J]. Spacecraft Environment Engineering, 2005, 22(5): 300-303 doi: 10.3969/j.issn.1673-1379.2005.05.011
    [19] 刘玉魁. 真空工程设计[M]. 北京: 化学工业出版社, 2016

    Liu Yukui. Design of vacuum engineering[M]. Beijing: Chemical Industry Press, 2016
    [20] ISO 11254-2: 2001, Lasers and laser-related equipment – determination of laser-induced damage threshold of optical surfaces[S].
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  148
  • HTML全文浏览量:  45
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-16
  • 修回日期:  2024-12-05
  • 录用日期:  2024-12-05
  • 网络出版日期:  2024-12-18
  • 刊出日期:  2025-12-13

目录

    /

    返回文章
    返回