留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于衍射成像的高分辨X射线诊断技术仿真研究

李锦波 徐捷 穆宝忠 王新

李锦波, 徐捷, 穆宝忠, 等. 基于衍射成像的高分辨X射线诊断技术仿真研究[J]. 强激光与粒子束, 2025, 37: 052004. doi: 10.11884/HPLPB202537.240269
引用本文: 李锦波, 徐捷, 穆宝忠, 等. 基于衍射成像的高分辨X射线诊断技术仿真研究[J]. 强激光与粒子束, 2025, 37: 052004. doi: 10.11884/HPLPB202537.240269
Li Jinbo, Xu Jie, Mu Baozhong, et al. Simulation research on high resolution X-ray diagnosis technology based on diffraction imaging[J]. High Power Laser and Particle Beams, 2025, 37: 052004. doi: 10.11884/HPLPB202537.240269
Citation: Li Jinbo, Xu Jie, Mu Baozhong, et al. Simulation research on high resolution X-ray diagnosis technology based on diffraction imaging[J]. High Power Laser and Particle Beams, 2025, 37: 052004. doi: 10.11884/HPLPB202537.240269

基于衍射成像的高分辨X射线诊断技术仿真研究

doi: 10.11884/HPLPB202537.240269
基金项目: 国家重点研发计划项目(2023YFA1608400)
详细信息
    作者简介:

    李锦波,2230962@tongji.edu.cn

    通讯作者:

    徐 捷,1310581@tongji.edu.cn

  • 中图分类号: O434.1;TP391.9

Simulation research on high resolution X-ray diagnosis technology based on diffraction imaging

  • 摘要: 为了研究激光聚变内爆中出现的流体力学不稳定性问题,需要具备大视场、高分辨率的X射线诊断技术。菲涅耳波带片(FZP)是一种圆形非周期光栅结构,可实现X射线的高空间分辨率成像。开展了基于衍射成像的高分辨X射线诊断技术仿真研究,展示了FZP对于流体力学不稳定性问题的应用前景。基于衍射理论建立FZP理论模型,根据诊断实验环境,设计了工作能点为8.04 keV下的FZP结构参数。基于光学仿真模型,对FZP成像色差问题进行模拟,给出了空间分辨与光谱带宽的关系,仿真结果表明,光源带宽小于0.2 keV,FZP的分辨率优于3 μm。通过网格背光成像仿真表明,FZP在0.8 mm视场内,可以实现优于3 μm的分辨。
  • 图  1  FZP半波带法

    Figure  1.  Fresnel half-wave zone method

    图  2  波带片聚焦原理示意图

    Figure  2.  Schematic diagram of zone plate focusing

    图  3  OASYS参数设置界面

    Figure  3.  OASYS parameter setting interface

    图  4  使用点光源聚焦的FZP成像规律模拟

    Figure  4.  Simulation of FZP imaging law using point light source focusing

    图  5  二维网格模拟实验

    Figure  5.  Simulation experiment using two-dimensional grid

    图  6  FOV各位置处的分辨率结果

    Figure  6.  Resolution at various positions on FOV

    图  7  其他能点下的点扩散函数随能量的变化规律

    Figure  7.  Variation law of point spread function with energy under other energy points

    表  1  模拟实验基本参数

    Table  1.   Basic parameters of simulation experiment

    energy/keV diameter/μm $ \mathrm{\Delta }{r}_{n} $/nm $ {r}_{1} $/μm M N
    8.04 433.5 67.7 5.42 20 1600
    下载: 导出CSV

    表  2  中文表题

    Table  2.   Basic parameters of multi energy points simulation experiment

    energy/keV diameter/μm $ \mathrm{\Delta }{r}_{n} $/nm $ {{r}}_{1} $/μm M N
    4.51 579.0 90.5 7.24 20 1600
    6.40 486.0 76.0 6.07 20 1600
    9.67 395.4 61.0 4.94 20 1600
    11.00 370.7 58.0 4.63 20 1600
    下载: 导出CSV
  • [1] Do A, Pickworth L A, Kozioziemski B J, et al. Fresnel zone plate development for X-ray radiography of hydrodynamic instabilities at the National Ignition Facility[J]. Applied Optics, 2020, 59(34): 10777-10785. doi: 10.1364/AO.408569
    [2] Do A, Kozioziemski B J. Fresnel zone plate point spread function approximation for zeroth order mitigation in millimetric field of view X-ray imaging[J]. Review of Scientific Instruments, 2022, 93: 103507. doi: 10.1063/5.0101691
    [3] Do A, Angulo A M, Hall G N, et al. X-ray imaging of Rayleigh–Taylor instabilities using Fresnel zone plate at the National Ignition Facility[J]. Review of Scientific Instruments, 2021, 92: 053511. doi: 10.1063/5.0043682
    [4] 陈志峰. 梁铨廷教授著《物理光学》及其配套教材评介[J]. 求知导刊, 2017(6):155

    Chen Zhifeng. Liang Quanting, Physical Optics[J]. Guide to Knowledge, 2017(6): 155
    [5] Born M, Wolf E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light[M]. 7th ed. Cambridge: Cambridge University Press, 2013.
    [6] 徐向东, 洪义麟, 付绍军, 等. X射线波带片的制作及其应用[J]. 光学技术, 1999(2):22-25 doi: 10.3321/j.issn:1002-1582.1999.02.002

    Xu Xiangdong, Hong Yilin, Fu Shaojun, et al. X ray zone plates fabrication and its application[J]. Optical Technology, 1999(2): 22-25 doi: 10.3321/j.issn:1002-1582.1999.02.002
    [7] Suzuki Y, Takeuchi A, Takano H, et al. Performance test of Fresnel zone plate with 50 nm outermost zone width in hard X-ray region[J]. Japanese Journal of Applied Physics, 2005, 44: 1994. doi: 10.1143/JJAP.44.1994
    [8] Takeuchi A, Uesugi K, Uesugi M, et al. High-energy X-ray nanotomography introducing an apodization Fresnel zone plate objective lens[J]. Review of Scientific Instruments, 2021, 92: 023701. doi: 10.1063/5.0020293
    [9] Chao W L, Kim J, Rekawa S, et al. Demonstration of 12 nm resolution Fresnel zone plate lens based soft X-ray microscopy[J]. Optics Express, 2009, 17(20): 17669-17677. doi: 10.1364/OE.17.017669
    [10] Chu Y S, Yi J M, De Carlo F, et al. Hard-X-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution[J]. Applied Physics Letters, 2008, 92: 103119. doi: 10.1063/1.2857476
    [11] Attwood D. Soft X-rays and extreme ultraviolet radiation: principles and applications[M]. Cambridge: Cambridge University Press, 1999.
    [12] Do A, Briat M, Baton S D, et al. Two-channel high-resolution quasi-monochromatic X-ray imager for Al and Ti plasma[J]. Review of Scientific Instruments, 2018, 89: 113702. doi: 10.1063/1.5042069
    [13] Do A, Troussel P, Baton S D, et al. High-resolution quasi-monochromatic X-ray imaging using a Fresnel phase zone plate and a multilayer mirror[J]. Review of Scientific Instruments, 2017, 88: 013701. doi: 10.1063/1.4973296
    [14] Guilbaud O, Edwards M, Klisnick A, et al. Near-field imaging of Ni-like silver transient collisional X-ray laser[C]//Soft X-Ray Lasers and Applications V. 2003: 17-28.
    [15] Rus B, Mocek T, Präg A R, et al. Multi-millijoule, deeply saturated X-ray laser at 21.2 nm for applications in plasma physics[J]. Plasma Physics and Controlled Fusion, 2002, 44: B207. doi: 10.1088/0741-3335/44/12B/315
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  33
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-19
  • 修回日期:  2025-02-15
  • 录用日期:  2025-02-15
  • 网络出版日期:  2025-03-12
  • 刊出日期:  2025-03-31

目录

    /

    返回文章
    返回