留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机器学习在BEPCII超导腔故障分析中的应用

曾童科 戴建枰

曾童科, 戴建枰. 机器学习在BEPCII超导腔故障分析中的应用[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240270
引用本文: 曾童科, 戴建枰. 机器学习在BEPCII超导腔故障分析中的应用[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240270
Zeng Tongke, Dai Jianping. Application of machine learning in BEPCII superconduction radio-frequency cavity fault analysis[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240270
Citation: Zeng Tongke, Dai Jianping. Application of machine learning in BEPCII superconduction radio-frequency cavity fault analysis[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240270

机器学习在BEPCII超导腔故障分析中的应用

doi: 10.11884/HPLPB202537.240270
基金项目: 国家自然科学基金面上项目(12275286)
详细信息
    作者简介:

    曾童科,zengtk@ihep.ac.cn

    通讯作者:

    戴建枰,jpdai@ihep.ac.cn

  • 中图分类号: TL507

Application of machine learning in BEPCII superconduction radio-frequency cavity fault analysis

  • 摘要: 超导腔故障的传统分析方法依赖先验知识,人工和时间成本较高,准确性和一致性较差,并且在处理复杂设备和大量数据时效率较低。机器学习技术能够提高故障分类的准确性和效率,减少主观判断造成的人为误差。研究了基于机器学习算法的超导腔故障分类方法,即,基于BEPCII运行过程中产生的超导腔故障图片数据,通过图片信息提取、特征选择与优化、机器学习算法训练、利用K折交叉验证分析模型准确率与一致性等,实现了对超导腔故障的分类。研究结果表明,随机森林算法、支持向量机与Bagging分类算法在处理故障图片时有更好的分类效果,有监督学习方法的准确性和一致性明显高于无监督学习。研究中实现的故障分类达到了较高的准确率和一致性,有助于快速高效地区分BEPCII超导腔上发生的故障,同时为其他加速器中超导腔故障的诊断提供参考。
  • 图  1  BEPCII高频系统的典型故障

    Figure  1.  Typical faults of BEPCII RF system

    图  2  BEPCII高频系统外部原因引起的超导腔故障

    Figure  2.  Faults caused by external causes of the BEPCII RF system

    图  3  RGB模型处理后的复现图像

    Figure  3.  Reproduced image processed by RGB modeling

    图  4  利用梯度的边沿检测效果图

    Figure  4.  Schematic of edge detection using gradient

    图  5  BEPCII超导腔故障数据分布情况

    Figure  5.  Distribution of BEPCII SRF cavity fault data

    图  6  K折交叉验证后各分类算法的混淆矩阵

    notes: ①—SRF cavity faults caused by failure of RF hardwares ; ②—SRF cavity faults caused by malfunction of the cavity tuner; ③—SRF cavity faults caused by LLRF loop oscillation due to excessive beam injection; ④—SRF cavity faults caused by incident power jitter; ⑤—SRF cavity faults caused by beam loss due to other systems

    Figure  6.  Confusion matrix for each classification algorithm after K-fold cross-validation

    表  1  机器学习算法分类验证精度

    Table  1.   Validation accuracy of machine learning algorithms

    method accuracy/% Kappa coefficient
    Support Vector Method 96.296 0.913
    Random Forest 98.378 0.872
    Decision Tree 94.444 0.916
    Bagging Classifier 98.148 0.955
    K-means 88.235 0.179
    K-Nearest Neighbor 86.275 0.385
    下载: 导出CSV

    表  2  BEPCII超导腔故障分类情况

    Table  2.   Classification of BEPCII SRF cavity faults

    method accuracy/% Kappa coefficient
    Support Vector Method 96.638 0.886
    Random Forest 96.722 0.926
    Decision Tree 88.893 0.723
    Bagging Classifier 95.702 0.933
    K-means 77.796 ~0
    K-Nearest Neighbor 78.013 ~0
    下载: 导出CSV
  • [1] 王光伟, 沙鹏, 潘卫民, 等. BEPCII高频系统的建造[J]. 中国物理C, 2008(s1):169-171

    Wang Guangwei, Sha Peng, Pan Weimin, et al. Construction of the BEPCII RF system[J]. Chinese Physics C, 2008(s1): 169-171
    [2] Solopova A, Carpenter A, Powers T, et al. SRF cavity fault classification using machine learning at CEBAF[R]. Newport News: Thomas Jefferson National Accelerator Facility (TJNAF), 2019.
    [3] Tennant C, Carpenter A, Powers T, et al. Superconducting radio-frequency cavity fault classification using machine learning at Jefferson Laboratory[J]. Physical Review Accelerators and Beams, 2020, 23: 114601. doi: 10.1103/PhysRevAccelBeams.23.114601
    [4] Vidyaratne L, Carpenter A, Powers T, et al. Deep learning based superconducting radio-frequency cavity fault classification at Jefferson laboratory[J]. Frontiers in Artificial Intelligence, 2022, 4: 718950. doi: 10.3389/frai.2021.718950
    [5] Rahman M M, Iftekharuddin K, Carptenter A, et al. Real-time cavity fault prediction in CEBAF using deep learning[C]//Proceedings of the North American Particle Accelerator Conference. 2022: 687-690.
    [6] 肖麟阁, 戴建枰, 王群要, 等. BEPCII超导腔失效分析[J]. 强激光与粒子束, 2019, 31:085105 doi: 10.11884/HPLPB201931.190078

    Xiao Linge, Dai Jianping, Wang Qunyao, et al. Analysis of the failure of BEPCII SRF cavities[J]. High Power Laser and Particle Beams, 2019, 31: 085105 doi: 10.11884/HPLPB201931.190078
    [7] 韩晓微. 彩色图像处理关键技术研究[D]. 沈阳: 东北大学, 2005

    Han Xiaowei. Study on key technologies of color image processing[D]. Shenyang: Northeastern University, 2005
    [8] 戴聪聪, 罗小燕, 邵凡, 等. 基于CEEMDAN和AR模型的岩体声发射信号特征提取方法研究[J]. 化工矿物与加工, 2018, 47(6):20-24

    Dai Congcong, Luo Xiaoyan, Shao Fan, et al. Study on extraction method of rock acoustic emission signals based on CEEMDAN and AR model[J]. Industrial Minerals & Processing, 2018, 47(6): 20-24
    [9] Das K, Behera R N. A survey on machine learning: concept, algorithms and applications[J]. International Journal of Innovative Research in Computer and Communication Engineering, 2017, 5(2): 1301-1309.
    [10] 李小斌, 李世银. AdBagging: 自适应抽样参数在线装袋算法[J]. 计算机工程与设计, 2011, 32(12):4095-4099

    Li Xiaobin, Li Shiyin. AdBagging: adaptive sampling parameters online bagging algorithm[J]. Computer Engineering and Design, 2011, 32(12): 4095-4099
    [11] 孔英会, 车辚辚, 苑津莎, 等. 基于小波分解和数据挖掘中决策树算法的电能质量扰动识别方法[J]. 电网技术, 2007, 31(23):78-82

    Kong Yinghui, Che Linlin, Yuan Jinsha, et al. A power quality disturbance identification method based on wavelet decomposition and decision tree algorithm in data mining[J]. Power System Technology, 2007, 31(23): 78-82
    [12] 孙吉贵, 刘杰, 赵连宇. 聚类算法研究[J]. 软件学报, 2008, 19(1):48-61

    Sun Jigui, Liu Jie, Zhao Lianyu. Clustering algorithms research[J]. High Power Laser and Particle Beams, 2008, 19(1): 48-61
    [13] 张宁, 贾自艳, 史忠植. 使用KNN算法的文本分类[J]. 计算机工程, 2005, 31(8):171-172,185

    Zhang Ning, Jia Ziyan, Shi Zhongzhi. Text categorization with KNN algorithm[J]. Computer Engineering, 2005, 31(8): 171-172,185
    [14] James G, Witten D, Hastie T, et al. An introduction to statistical learning[M]. New York: Springer, 2013: 180-182.
    [15] Foody G M. Status of land cover classification accuracy assessment[J]. Remote Sensing of Environment, 2002, 80(1): 185-201. doi: 10.1016/S0034-4257(01)00295-4
    [16] Veropoulos K, Campbell I C G, Cristianini N. Controlling the sensitivity of support vector machines[C]//Proceedings of the International Joint Conference on AI. 1999: 55-60.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  44
  • HTML全文浏览量:  17
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-20
  • 修回日期:  2025-05-13
  • 录用日期:  2025-05-14
  • 网络出版日期:  2025-05-24

目录

    /

    返回文章
    返回