留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CSNS残余气体电离型束流剖面测量畸变校正

刘孟宇 孙纪磊 徐智虹 杨涛 聂小军 黄蔚玲 杨仁俊 康玲 刘华昌

刘孟宇, 孙纪磊, 徐智虹, 等. CSNS残余气体电离型束流剖面测量畸变校正[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240271
引用本文: 刘孟宇, 孙纪磊, 徐智虹, 等. CSNS残余气体电离型束流剖面测量畸变校正[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240271
Liu Mengyu, Sun Jilei, Xu Zhihong, et al. Ddistortion correction of CSNS Ionization Profile Monitor measurement[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240271
Citation: Liu Mengyu, Sun Jilei, Xu Zhihong, et al. Ddistortion correction of CSNS Ionization Profile Monitor measurement[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240271

CSNS残余气体电离型束流剖面测量畸变校正

doi: 10.11884/HPLPB202537.240271
基金项目: 广东省自然科学基金(2021A1515010269); 国家自然科学基金项目(12275294)
详细信息
    作者简介:

    刘孟宇,liumy@ihep.ac.cn

    通讯作者:

    黄蔚玲,huangwei@ihep.ac.cn

    杨仁俊,yangrenjun@ihep.ac.cn

  • 中图分类号: TL506

Ddistortion correction of CSNS Ionization Profile Monitor measurement

  • 摘要: ,残余气体电离型束流剖面探测器(IPM)可以实时提供高流强质子加速器调试和稳定运行所需的关键束流分布信息, 中国散裂中子源(CSNS)直线加速器IPM装置采用紧凑型结构设计,通过离子模式收集并由光学成像系统实现束流横向一维分布测量。电极板开孔处的蜂窝网格结构阻挡部分离子或电子进入微通道板,造成成像阴影并引入束流分布畸变,利用离线算法进行校正。利用偏微分修复和机器学习算法对CSNS直线加速器IPM蜂窝网格造成的成像阴影和束流分布畸变进行了校正处理,采用无监督机器学习方法DIP校正后的束流尺寸与理论预期偏差低于10%并保持较好信噪比。
  • 图  1  CSNS-LRBT段IPM及其工作原理

    Figure  1.  CSNS LR- IPM and its principle

    图  2  残余气体为氢气H2及氦气He时电子阻止本领与入射粒子能量的关系

    Figure  2.  The relationship between residual gas stopping power and incident particle energy when the residual gas is hydrogen H2 and helium He

    图  3  引导场对剖面畸变的矫正曲线及对束流的影响

    Figure  3.  Correction curve of profile distortion by guidance field and its influence on beam loss

    图  4  LR-IPM验证装置下极板上的匀场栅网

    Figure  4.  Honey comb on the cathode plate of LR-IPM in CSNS

    图  5  屏蔽附近Ex分布及对测量结果的影响

    Figure  5.  Ex distribution near the honey comb and its impact on measurement results

    图  6  安装电磁屏蔽后IPM获取的图像及一维投影

    Figure  6.  The image obtained by the IPM after installing the electromagnetic shielding (left) and the integration results (right)

    图  7  DIP图像处理流程

    Figure  7.  DIP image processing workflow

    图  8  不同算法的信噪比及修复效果对比

    Figure  8.  Comparison of PSNR and repair effects of different algorithms

  • [1] Cheymol B. Development of beam transverse profile and emittance monitors for the CERN LINAC4[D]. Clermont-Ferrand: Université Blaise Pascal-Clermont-Ferrand II, 2011.
    [2] 孙纪磊, 阮玉芳, 肖帅, 等. 强流质子加速器束流剖面分布及束晕测量系统设计[J]. 强激光与粒子束, 2011, 23(1):190-194

    Sun Jilei, Ruan Yufang, Xiao Shuai, et al. Design of beam profile and halo measurement system for high-intensity RFQ accelerator[J]. High Power Laser and Particle Beams, 2011, 23(1): 190-194
    [3] Connolly R, Degen C, DeSanto L, et al. A laser-wire beam-energy and beam-profile monitor at the BNL linac[C]//Proceedings of 2011 Particle Accelerator Conference. 2011: 12-29.
    [4] Thomas H. Development of a laser-based emittance monitor for negative hydrogen beams[D]. Universität Erlangen-Nürnberg, 2017.
    [5] Zagel J R, Crisp J L, Halm A A, et al. Fermilab main ring ion profile monitor system[C]//Proceedings of 1997 Particle Accelerator Conference. 1997: 2166-2168.
    [6] Wittenburg K. Experience with the residual gas ionization beam profile monitors at the DESY proton accelerators[C]//Proceedings of the 3rd European Particle Accelerator Conference. 1992: 1133-1135.
    [7] Shintomi T, Nomura S, Sato H, et al. SMES for electric power compensation of the J-PARC high intensity proton synchrotron[J]. IEEE Transactions on Applied Superconductivity, 2006, 16(2): 628-631. doi: 10.1109/TASC.2005.864354
    [8] Schippers J M, Kiewiet H H, Zijlsta J. A beam profile monitor using the ionization of residual gas in the beam pipe[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1991, 310(1/2): 540-543.
    [9] Hornstra Jr F, Trump M. High resolution highly sensitive nonintercepting beam profile monitor for the Los Alamos meson facility (LAMPF)[C]//Proceedings of 1970 Proton Linear Accelerator Conference. 1970: 1107-1117.
    [10] Wang Sheng, Fang Shouxian, Fu Shinian, et al. Introduction to the overall physics design of CSNS accelerators[J]. Chinese Physics C, 2009, 33(S2): 1-3. doi: 10.1088/1674-1137/33/S2/001
    [11] Bethe H. Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie[J]. Annalen der Physik, 1930, 397(3): 325-400. doi: 10.1002/andp.19303970303
    [12] Shiltsev V. Space-charge effects in ionization beam profile monitors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 986: 164744. doi: 10.1016/j.nima.2020.164744
    [13] Lee K W, Cheong Y C, Hong I P, et al. Design equation of shielding effectiveness of honeycomb[C]//IEEE International Symposium on Antennas and Propagation. 2005: 19-22.
    [14] 钱伟新, 王婉丽, 刘瑞根. 种基于偏微分方程约束的闪光照相图像重建算法[J]. 强激光与粒子束, 2008, 20(2):286-290

    Qian Weixin, Wang Wanli, Liu Ruigen. Image reconstruction algorithm based on constrained processing by partial differential equation for flash radiography[J]. High Power Laser and Particle Beams, 2008, 20(2): 286-290
    [15] 林胜华, 汪继文, 沈玉峰, 等. 基于图像结构和纹理的快速修复方法[J]. 计算机技术与发展, 2008, 18(12):88-91 doi: 10.3969/j.issn.1673-629X.2008.12.027

    Lin Shenghua, Wang Jiwen, Shen Yufeng, et al. Fast inpainting approach based on image structure and texture[J]. Computer Technology and Development, 2008, 18(12): 88-91 doi: 10.3969/j.issn.1673-629X.2008.12.027
    [16] Lempitsky V, Vedaldi A, Ulyanov D. Deep image prior[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018: 9446-9454.
  • 加载中
图(8)
计量
  • 文章访问数:  44
  • HTML全文浏览量:  31
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-21
  • 修回日期:  2025-02-17
  • 录用日期:  2025-02-17
  • 网络出版日期:  2025-04-07

目录

    /

    返回文章
    返回