Simulation study on radiation damage effects of GaAs solar cells in space
-
摘要: 航天器在轨服役期间长期处于复杂恶劣的空间辐射环境,以GaAs为代表的III-V族化合物太阳能电池因具备高光电转换效率和抗辐照能力而被广泛应用于航天领域。采用有限元法,基于计算机辅助设计技术(TCAD)对GaAs太阳能电池的空间辐照损伤效应进行了研究。以AM0光谱辐照下的GaAs太阳能电池电学参数为依据,建立了单结太阳能电池结构模型和辐照损伤模型,获得了在不同电子辐照条件下电池的伏安特性曲线,结合已有实验结果验证了本文模拟结果,分析了空间环境辐照下GaAs太阳能电池电学性能退化规律。结果表明,辐照损伤缺陷使得少数载流子扩散长度减小,降低了光生载流子的收集效率,在一定电子能量下,太阳能电池电学性能的退化幅度随辐照注量水平的提高而增大。Abstract: Spacecraft have to be exposed to complex and harsh space radiation environments for a long time during their in-orbit service. III-V compound solar cells, represented by GaAs, are widely used in the aerospace field due to their high photoelectric conversion efficiency and radiation resistance. The spatial radiation damage effect of GaAs solar cells was studied using finite element method and technology computer-aided design (TCAD). Based on the electrical parameters of GaAs solar cells under AM0 spectral irradiation, a single-junction solar cell structure model and irradiation damage model were established. The volt ampere characteristic curves of the cells under different electron irradiation conditions were obtained, and the simulation results in this paper were verified with existing experimental results. The degradation law of GaAs solar cell electrical performance under space environment irradiation was analyzed. The results indicate that irradiation damage defects reduce the diffusion length of minority carriers and decrease the collection efficiency of photo generated carriers. At a certain electron energy, the degradation amplitude of the electrical performance of solar cells increases with the increase of irradiation dose level.
-
Key words:
- GaAs solar cells /
- device simulation /
- radiation damage /
- electrical performance
-
表 1 电池材料参数设置
Table 1. Solar cell material parameter settings
parameter temperature/K electron
affinity/eVelectron
mobility/(cm2·V−1·s−1)hole mobility/
(cm2·V−1·s−1)bandgap/eV conduction band
DOS/cm−3300 4.07 8800 400 1.424 4.7×1017 valence band
DOS/cm−3permittivity optical recombination
rate/(cm3·s−1)SRH recombination
electron lifetime/sSRH recombination
hole lifetime/s9×1018 12.9 1.8×10−10 4.5×10−9 2×10−8 表 2 辐照后电池产生电子陷阱和空穴陷阱参数[6]
Table 2. Electron and hole trap parameters generated by irradiated solar cells [6]
fluence
Fe/cm−2electron traps in base hole traps in emitter Et/eV Nt/cm−3 Sn/cm−2 Et/eV Nt/cm−3 Sp/cm−2 1×1014 Ec−0.14 1.8×1013 5.7×10−13 Ev+0.71 3.0×1012 2.2×10−13 Ec−0.41 8.2×1012 2.6×10−13 − − − Ec−0.71 7.0×1012 8.3×10−13 − − − Ec−0.90 8.8×1011 3.0×10−11 − − − 1×1015 Ec−0.41 3.0×1013 2.6×10−13 Ev+0.13 2.2×1014 2.6×10−13 Ec−0.71 1.7×1013 8.3×10−13 Ev+0.29 4.0×1014 2.6×10−13 Ec−0.90 2.8×1013 3.0×10−11 Ev+0.35 8.0×1013 7.2×10−15 − − − Ev+0.71 6.4×1013 2.2×10−13 1×1016 Ec−0.41 8.8×1013 2.6×10−13 Ev+0.13 8.4×1014 2.6×10−13 Ec−0.71 5.0×1013 8.3×10−13 Ev+0.29 1.6×1015 2.6×10−13 Ec−0.90 6.5×1014 3.0×10−11 Ev+0.35 1.0×1015 7.2×10−15 − − − Ev+0.71 2.7×1014 2.2×10−13 表 3 模拟和实验GaAs太阳能电池电学特性的比较
Table 3. Comparison of electrical characteristics between simulated and experimental GaAs solar cells
Isc/mA Voc/V pmax/(mW/cm2) fill factor ŋ /% simulation 26.51 0.9968 23.19 0.8774 17.14 experiment − − 21.25 0.7800 15.70 Silvaco TCAD 26.44 0.9960 21.67 0.8230 16.48 表 4 不同注量水平下1 MeV 次级电子辐照后GaAs电池电学特性变化
Table 4. 1 MeV at different fluence levels changes in electrical characteristics of GaAs solar cells after irradiation
Isc/mA Voc/V Pmax/(mW/cm2) fill factor ŋ/% pre-radiation 26.51 0.9968 23.19 0.8774 17.14 fluence level/(e/cm2) 1×1014 24.84 0.9789 20.82 0.8562 15.39 1×1015 21.44 0.9175 15.83 0.8045 11.70 1×1016 17.25 0.8805 12.08 0.7956 8.931 表 5 模拟和实验GaAs太阳能电池电学特性归一化值的比较
Table 5. Comparison of normalized value of electrical characteristics between simulated and experimental GaAs solar cells
fluence level/(e/cm2) parameter Isc/mA Voc/V Pmax/(mW/cm2) fill factor ŋ/% 1×1014 simulation 0.937 0.982 20.82 0.8562 15.39 experiment 0.94 0.96 20 0.78 15.1 difference 1(%) 0.319 2.29 0.041 9.76 1.92 silvaco TCAD 0.936 0.973 19.50 0.814 14.83 difference 2(%) 0.106 0.924 6.76 5.18 3.77 1×1015 simulation 0.808 0.920 15.83 0.8045 11.70 experiment 0.82 0.91 16 0.77 11.8 difference 1(%) 1.46 1.09 1.06 4.48 0.847 silvaco TCAD 0.806 0.892 14.67 0.775 11.16 difference 2(%) 0.248 3.13 7.90 3.80 4.83 1×1016 simulation 0.650 0.883 12.08 0.7956 8.931 experiment 0.60 0.84 11.25 0.76 8.3 difference 1(%) 8.33 5.11 7.37 4.68 7.60 silvaco TCAD 0.648 0.846 10.98 0.766 8.35 difference 2(%) 0.308 4.37 10.0 3.86 6.95 -
[1] 王建国. 高空核爆炸磁流体动力学电磁脉冲[J]. 强激光与粒子束, 2024, 36:073001 doi: 10.11884/HPLPB202436.240105Wang Jianguo. Magnetohydrodynamic electromagnetic pulse produced by high altitude nuclear explosion[J]. High Power Laser and Particle Beams, 2024, 36: 073001 doi: 10.11884/HPLPB202436.240105 [2] 王建国, 牛胜利, 张殿辉, 等. 高空核爆炸效应参数手册[M]. 北京: 原子能出版社, 2010: 31Wang Jianguo, Niu Shengli, Zhang Dianhui, et al. The parameter manual book of high-altitude nuclear explosion effects[M]. Beijing: Atomic Energy Press, 2010: 31 [3] 陶应龙, 王建国, 牛胜利, 等. 高空核爆炸瞬发辐射电离效应的数值模拟[J]. 物理学报, 2010, 59(8): 5915-5921Tao Yinglong, Wang Jianguo, Niu Shengli, et al. Numerical simulation of the ionization effects of prompt radiation from high-altitude nuclear explosions[J]. Acta Physica Sinica, 2010, 59(8): 5914-5920 [4] 李培, 徐洁, 贺朝会, 等. 钙钛矿太阳能电池辐照实验研究[J]. 物理学报, 2023, 72:126101 doi: 10.7498/aps.72.20230230Li Pei, Xu Jie, He Chaohui, et al. Experimental study on irradiation of perovskite solar cells[J]. Acta Physica Sinica, 2023, 72: 126101 doi: 10.7498/aps.72.20230230 [5] 郭爱萍, 孙强. 基于GaAs半导体太阳电池技术发展概况[J]. 电源技术, 2007, 31(9):757-758 doi: 10.3969/j.issn.1002-087X.2007.09.023Guo Aiping, Sun Qiang. Development status of solar cell technology based on GaAs semi-conductor[J]. Chinese Journal of Power Sources, 2007, 31(9): 757-758 doi: 10.3969/j.issn.1002-087X.2007.09.023 [6] Li S S, Wang W L, Loo R Y, et al. Study of deep-level defects and annealing effects in undoped and Sn-doped GaAs solar cells irradiated by one-MeV electrons[J]. Solid-State Electronics, 1983, 26(9): 835-840. doi: 10.1016/0038-1101(83)90053-9 [7] Li S S, Loo R Y. Deep-level defects and numerical simulation of radiation damage in GaAs solar cells[J]. Solar Cells, 1991, 31(4): 349-377. doi: 10.1016/0379-6787(91)90105-X [8] 胡建民, 吴宜勇, 钱勇, 等. GaInP/GaAs/Ge三结太阳电池的电子辐照损伤效应[J]. 物理学报, 2009, 58(7):5051-5056 doi: 10.3321/j.issn:1000-3290.2009.07.107Hu Jianmin, Wu Yiyong, Qian Yong, et al. Damage of electron irradiation to the GaInP/GaAs/Ge triple-junction solar cell[J]. Acta Physica Sinica, 2009, 58(7): 5051-5056 doi: 10.3321/j.issn:1000-3290.2009.07.107 [9] 吴宜勇, 岳龙, 胡建民, 等. 等效位移损伤剂量法预测GaInP2/GaAs/Ge三结电池在轨性能退化规律[J]. 航天器环境工程, 2011, 28(4):329-336Wu Yiyong, Yue Long, Hu Jianmin, et al. Predictions of degradation of electrical properties of GaInP2/GaAs/Ge solar cell using equivalent displacement-damage-dose technique[J]. Spacecraft Environment Engineering, 2011, 28(4): 329-336 [10] Loo R Y, Kamath G S, Li S S. Radiation damage and annealing in GaAs solar cells[J]. IEEE Transactions on Electron Devices, 1990, 37(2): 485-497. doi: 10.1109/16.46387 [11] Luque A, Hegedus S. Handbook of photovoltaic science and engineering[M]. 2nd ed. California: John Wiley & Sons, Ltd, 2010: 82-129. [12] Crespin A L. A novel approach to modeling the effects of radiation in Gallium-Arsenide solar cells using Silvaco's atlas software[D]. Monterey: Naval Postgraduate School, 2004. [13] Ryabtseva M V, Petrov A S, Voevodkin G S, et al. Degradation of AIIIBV/Ge triple junction solar cells irradiated by gamma-rays, electrons and neutrons[J]. Microelectronics Reliability, 2021, 125: 114350. doi: 10.1016/j.microrel.2021.114350 [14] 丁美斌, 娄朝刚, 王琦龙, 等. GaAs量子阱太阳能电池量子效率的研究[J]. 物理学报, 2014, 63:198502 doi: 10.7498/aps.63.198502Ding Meibin, Lou Chaogang, Wang Qilong, et al. Influence of quantum wells on the quantum efficiency of GaAs solar cells[J]. Acta Physica Sinica, 2014, 63: 198502 doi: 10.7498/aps.63.198502 [15] Schiavo D. Modeling radiation effects on a triple junction solar cell using Silvaco ATLAS[D]. Monterey: Naval Postgraduate School, 2012. [16] 樊晖煜. 三结GaAs太阳电池电磁脉冲干扰效应仿真与试验研究[D]. 西安: 西安电子科技大学, 2021: 45-59Fan Huiyu. Simulation and experimental study on the electromagnetic pulse interference effect of three-junction GaAs solar cell[D]. Xi'an: Xidian University, 2021: 45-59 -