留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高重复频率传输线结构冲击磁铁仿真分析

王东兴 韩波 武万锋 黄毛毛 朱燕燕

王东兴, 韩波, 武万锋, 等. 高重复频率传输线结构冲击磁铁仿真分析[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240273
引用本文: 王东兴, 韩波, 武万锋, 等. 高重复频率传输线结构冲击磁铁仿真分析[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240273
Wang Dongxing, Han Bo, Wu Wanfeng, et al. Analysis based on simulation of kicker working at high repetition frequency with transmission line structure[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240273
Citation: Wang Dongxing, Han Bo, Wu Wanfeng, et al. Analysis based on simulation of kicker working at high repetition frequency with transmission line structure[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240273

高重复频率传输线结构冲击磁铁仿真分析

doi: 10.11884/HPLPB202537.240273
详细信息
    作者简介:

    王东兴,wangdongxing@mail.iasf.ac.cn

  • 中图分类号: TL503.3;TL503.5

Analysis based on simulation of kicker working at high repetition frequency with transmission line structure

  • 摘要: 深圳中能高重复频率X射线自由电子激光(S3FEL)需要MHz的高重复频率高稳定性冲击磁铁(Kicker)系统,传输线结构冲击磁铁系统是实现高重复频率的有效途径。但传输线结构冲击磁铁的波形稳定性不足限制了该类型冲击磁铁在大型粒子加速器中的应用。为改善上述不足,基于传输线结构冲击磁铁的输入波形和电路结构参数开展了研究,利用傅里叶分析等数学工具分析了影响冲击磁铁工作波形稳定性的主要因素,揭示了冲击磁铁理想波形的谐波次数与传输线结构冲击磁铁截止频率之间的关系。在此基础上,提出一种减小冲击磁铁实际波形与理想波形偏差的方法。该方法通过调整冲击磁铁输入波形参数或者传输线结构冲击磁铁截止频率,在一定范围内可以获得冲击磁铁理想的工作波形。为验证上述关系,用电路仿真软件对冲击磁铁不同工作波形和不同电路参数进行了仿真。仿真结果证实了上述关系且验证了所提方法的有效性。
  • 图  1  传输线冲击磁铁系统示意图

    Figure  1.  Schematic of transmission line kicker

    图  2  脉冲波形示意图

    Figure  2.  Diagram of pulse waveform

    图  3  ndAn之间的关系图

    Figure  3.  Relationship between n, d and An

    图  4  不同N时的拟合曲线

    Figure  4.  Fitting curves with different N

    图  5  不同N时拟合曲线与梯形波误差

    Figure  5.  Error between trapezoidal wave and fitting curve with different N

    图  6  传输线结构冲击磁铁系统仿真示意图

    Figure  6.  Schematic of system of transmission line kicker in simulation

    图  7  电路参数引起负载电流相移

    Figure  7.  The phase shift of load current caused by circuit parameter

    图  8  d=100 ns,L取值不同时负载电流与理想电流误差

    Figure  8.  Error between the load current and the ideal current when d=100ns, L is different

    图  9  L=7.8125 nH,d取值不同时负载电流与理想电流误差

    Figure  9.  Error between the load current and the ideal current when L=7.8125nH, d is different

    图  10  L=62.5 nH,d取值不同时负载电流与理想电流误差

    Figure  10.  Error between the load current and the ideal current when L=62.5 nH, d is different

    表  1  d=100 ns时,不同L的脉冲电流平顶稳定性

    Table  1.   Flat-top stability of pulse current when d=100 ns, L has different values

    L/nH standard deviation time range of error data/µs
    7.8125 0.000292 0.2-0.4
    15.625 0.001918 0.203-0.403
    31.25 0.006951 0.209-0.409
    62.5 0.04593 0.222-0.422
    下载: 导出CSV

    表  2  L=7.8125 nH时,不同d的脉冲电流平顶稳定性

    Table  2.   The flat-top stability of pulse current when L=7.8125 nH, d is 40, 60, 100, 120 ns

    d/ns standard deviation time range of error data/µs
    40 0.001007 0.14-0.34
    60 0.000417 0.16-0.36
    100 0.000292 0.2-0.4
    120 0.00025 0.22-0.42
    下载: 导出CSV

    表  3  L=62.5 nH时,不同d的脉冲电流平顶稳定性

    Table  3.   Flat-top stability of pulse current when L=62.5 nH, d is 40, 60, 100, 120 ns

    d/ns standard deviation time range of error data/µs
    40
    60
    0.148448
    0.098411
    0.14-0.34
    0.16-0.36
    100 0.049833 0.2-0.4
    120 0.04615 0.22-0.42
    下载: 导出CSV
  • [1] Ducimetière L. Advances of transmission line kicker magnets[C]//Proceedings of the 2005 Particle Accelerator Conference. 2005: 235-239.
    [2] Lin Munan, Wu Y W, Huang L S, et al. Fast injection and extraction kicker system design for High rEpetition rate Muon Source at CSNS[J]. Journal of Instrumentation, 2021, 16: P08010. doi: 10.1088/1748-0221/16/08/P08010
    [3] Barnes M J, Ducimetière L, Fowler T, et al. Injection and extraction magnets: kicker magnets[C]//Proceedings of the CERN Accelerator School CAS 2009: Specialised Course on Magnets. 2009: 141-166.
    [4] Beukers T, Nguyen M, Tang Tao. Discrete element transmission line beam spreader kickers for LCLS-II[C]//2018 IEEE International Power Modulator and High Voltage Conference (IPMHVC). 2018: 151-155.
    [5] Armenta R B, Barnes M J, Blackmore E W, et al. Design concept for AGS injection kicker upgrade to 2 GeV[C]//Proceedings of the 2005 Particle Accelerator Conference. 2005: 1380-1382.
    [6] Armenta R B, Barnes M J, Blackmore E W, et al. Electromagnetic modeling of the AGS A10 injection kicker magnet[J]. IEEE Transactions on Applied Superconductivity, 2006, 16(2): 293-296. doi: 10.1109/TASC.2005.864458
    [7] Barnes M J, Wait G D. Low power measurements on an AGS injection kicker magnet[C]//2007 IEEE Particle Accelerator Conference (PAC). 2007: 2188-2190.
    [8] Fukuoka S, Fan K, Ishii K, et al. Development of a fast compensation kicker system for J-PARC main-ring injection[C]//Proceedings of IPAC 2013. 2013: 684-686.
    [9] Fan K, Ishii K, Fukuoka S, et al. Ferrite property effects on a fast kicker magnet[C]//Proceedings of the 10th Annual Meeting of Particle Accelerator Society of Japan (Nagoya, 2013). 2013: 845-847.
    [10] 吴官健, 王磊, 王冠文, 等. 环形正负电子对撞机注入引出分布参数型冲击磁铁设计[J]. 强激光与粒子束, 2023, 35:054002 doi: 10.11884/HPLPB202335.220364

    Wu Guanjian, Wang Lei, Wang Guanwen, et al. Design of injection and extraction delay-line kicker magnet for circular electron-positron collider[J]. High Power Laser and Particle Beams, 2023, 35: 054002 doi: 10.11884/HPLPB202335.220364
    [11] Schröder G. Fast pulsed magnet systems[M]//Chao A W, Tigner M. Handbook of Accelerator Physics and Engineering. Geneva: World Scientific Press, 1999: 460-466.
    [12] Chmielińska A, Barnes M J. Helical beam screen for the Future Circular Collider for hadrons injection kicker magnets[J]. Physical Review Accelerators and Beams, 2020, 23: 041002. doi: 10.1103/PhysRevAccelBeams.23.041002
    [13] Ohkawa T, Chiba Y, Wakasugi M. Development of the kicker magnet for muses[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 547(2/3): 287-293.
    [14] Barnes M J, Wait G D. Comparison of measured and predicted inductance per cell for a travelling wave kicker magnet[C]//Proceedings of the 5th European Particle Accelerator Conference. 1996: 2588-2590.
    [15] 刘超, 尚雷, 刘祖平, 等. 冲击磁铁脉冲发生器技术分析[J]. 高电压技术, 2008, 34(3):480-483

    Liu Chao, Shang Lei, Liu Zuping, et al. Technology of pulse generators for kicker magnets[J]. High Voltage Engineering, 2008, 34(3): 480-483
    [16] Shinde R S, Pareek P, Gaud V, et al. Studies of prototype transmission line extraction kicker magnet for booster synchrotron[C]//Proceeding of InPAC-2011: DAE-BRNS Indian Particle Accelerator Conference. 2011.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  43
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-23
  • 修回日期:  2024-12-04
  • 录用日期:  2024-12-17
  • 网络出版日期:  2024-12-17

目录

    /

    返回文章
    返回