Design and numerical simulation of high-matching, high-power, low-sidelobe slotted waveguide array antenna
-
摘要: 研究了波导缝隙阵天线在高功率微波技术中的应用,提出了一种新的设计方法,特别关注了波导缝隙阵天线的缝隙互耦、副瓣电平以及天线和馈源的匹配问题。新方法利用现代计算机技术快速计算出考虑缝隙互耦效应的缝隙电导函数,从而实现波导缝隙阵天线的高效设计,该方法无需复杂运算或外部结构,保证了系统紧凑性,并在设计波导缝隙面阵时表现出更高的有效性。仿真结果表明:新方法设计的天线在匹配度方面表现优异,在中心频率f = 2.458 GHz处,所设计的天线的各个端口的反射系数范围为−37.2 dB至−27.7 dB,相比使用Stevenson公式设计相同目标参数的天线的各个端口的反射系数范围为−11 dB至−8.7 dB,使用新方法设计的天线的各个端口的反射系数至少降低了19 dB。此外,新方法设计的天线实现了−30.2 dB的低副瓣电平和332.6 MW的高功率容量。Abstract: This paper investigates the application of waveguide slot array antennas in high-power microwave technology and proposes a novel design method, with particular emphasis on the slot coupling, sidelobe levels, and matching between the antenna and the feed. The new method leverages modern computing technology to rapidly compute the slot conductance function considering slot coupling effects, thereby enabling efficient design of waveguide slot array antennas. This method avoids complex calculations or external structures, ensuring system compactness and demonstrating high effectiveness in designing waveguide slot planar arrays. Simulation results indicate that antennas designed using the new method exhibit excellent matching performance. At the center frequency f = 2.458 GHz, the reflection coefficient for each port of antenna designed using the new method ranges from −37.2 dB to −27.7 dB. Compared with the range from −11 dB to −8.7 dB of antennas designed using the Stevenson formula for the same target parameters, the reflection coefficient of antennas designed with the new method is reduced by at least 19 dB. Moreover, the antennas designed with this new method achieve a low sidelobe level of −30.2 dB and a high power capacity of 332.6 MW.
-
Key words:
- mutual coupling /
- matching /
- sidelobe level /
- power capacity /
- high-power microwave
-
表 2 本文设计的高功率波导缝隙阵天线与已有工作的对比
Table 2. Comparison of the waveguide slot array antenna designed in this paper with existing works
Ref. f/GHz S/λ2 gain/dBi AE/% SLL/dB type of antenna [27] 3 8.46×4.3 24.6 63 −15 waveguide slot antenna [36] 5.8 19.1×11.2 29.2 30.9 −10 waveguide slot antenna [37] 3.17 4.4×0.36 9.91 50.25 −10 waveguide slot antenna [38] 3.95 6.8×6.3 24.6 53.33 −22 waveguide slot antenna [39] 3.4 5.7×0.8 14.5 48.4 −15 waveguide slot antenna this paper 2.458 7.4×7.26 25.3 50 −30.2 waveguide slot antenna -
[1] Song Minsheng, Bi Liangjie, Meng Lin, et al. High-efficiency phase-locking of millimeter-wave magnetron for high-power array applications[J]. IEEE Electron Device Letters, 2021, 42(11): 1658-1661. doi: 10.1109/LED.2021.3112563 [2] Qin Yu, Yin Yong, Song Minsheng, et al. Particle-in-cell simulations of relativistic magnetron with axial symmetrical split output[J]. IEEE Transactions on Plasma Science, 2023, 51(7): 1880-1884. doi: 10.1109/TPS.2023.3276922 [3] 郑琼, 毕亮杰, 沈大贵, 等. S波段MW级高效互耦磁控管模式分布调控[J]. 强激光与粒子束, 2024, 36:083007 doi: 10.11884/HPLPB202436.240109Zheng Qiong, Bi Liangjie, Shen Dagui, et al. Mode distribution control of S-band MW-level high-efficiency mutual coupling magnetron[J]. High Power Laser and Particle Beams, 2024, 36: 083007 doi: 10.11884/HPLPB202436.240109 [4] Bi Liangjie, Yin Yong, Wang Bin, et al. Tractable resonant circuit with two nonuniform beams for a high-power 0.22-THz extended interaction oscillator[J]. IEEE Electron Device Letters, 2021, 42(6): 931-934. doi: 10.1109/LED.2021.3072848 [5] 毕亮杰, 蒋欣宇, 李海龙, 等. 一种具有双输出端口的200-kW Ka波段速调管的集成互作用电路设计[J]. 红外与毫米波学报, 2023, 42(6):771-778 doi: 10.11972/j.issn.1001-9014.2023.06.010Bi Liangjie, Jiang Xinyu, Li Hailong, et al. Design of the integrated interaction circuits for a 200-kW Ka-band klystron with two output ports[J]. Journal of Infrared and Millimeter Waves, 2023, 42(6): 771-778 doi: 10.11972/j.issn.1001-9014.2023.06.010 [6] Vlasov S N, Orlova I M. Quasioptical transformer which transforms the waves in a waveguide having a circular cross section into a highly directional wave beam[J]. Radiophysics and Quantum Electronics, 1974, 17(1): 115-119. doi: 10.1007/BF01037072 [7] Courtney C C, Baum C E. The coaxial beam-rotating antenna (COBRA): theory of operation and measured performance[J]. IEEE Transactions on Antennas and Propagation, 2000, 48(2): 299-309. doi: 10.1109/8.833080 [8] Li Guolin, Liu Qiang, Qiu Yongfeng, et al. A low standing-wave-ratio wideband mode-transducing antenna for high-power microwaves[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(7): 5182-5188. doi: 10.1109/TAP.2020.2981731 [9] Yuan Chengwei, Fan Yuwei, Zhong Huihuang, et al. A novel mode-transducing antenna for high-power microwave application[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(10): 3022-3025. doi: 10.1109/TAP.2006.882199 [10] Peng Shengren, Yuan Chengwei, Shu Ting, et al. Design of a concentric array radial line slot antenna for high-power microwave application[J]. IEEE Transactions on Plasma Science, 2015, 43(10): 3527-3529. doi: 10.1109/TPS.2015.2392097 [11] Yuan Chengwei, Peng Shengren, Shu Ting, et al. Designs and experiments of a novel radial line slot antenna for high-power microwave application[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(10): 4940-4946. doi: 10.1109/TAP.2013.2273214 [12] Li Xiangqiang, Liu Qingxiang, Zhang Jianqiong, et al. 16-element single-layer rectangular radial line helical array antenna for high-power applications[J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9: 708-711. doi: 10.1109/LAWP.2010.2059371 [13] Guo Letian, Huang Wenhua, Chang Chao, et al. Studies of a leaky-wave phased array antenna for high-power microwave applications[J]. IEEE Transactions on Plasma Science, 2016, 44(10): 2366-2375. doi: 10.1109/TPS.2016.2601105 [14] Meng Ru, Xia Yulong, Guo Yuanyue, et al. An X-band 48-way leaky waveguide antenna with high aperture efficiency and high power capacity[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(12): 6799-6809. doi: 10.1109/TAP.2018.2870432 [15] Bi Shaofeng, Yuan Chengwei, Zhang Qiang, et al. An L-band leaky-wave array antenna for high-power microwave applications[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(8): 6918-6923. doi: 10.1109/TAP.2023.3241435 [16] Yu Longzhou, Yuan Chengwei, He Juntao, et al. Beam steerable array antenna based on rectangular waveguide for high-power microwave applications[J]. IEEE Transactions on Plasma Science, 2019, 47(1): 535-541. doi: 10.1109/TPS.2018.2884290 [17] Yue Jiaxuan, Zhou Chengmian, Xiao Ke, et al. W-band low-sidelobe series-fed slot array antenna based on groove gap waveguide[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(4): 908-912. doi: 10.1109/LAWP.2022.3228115 [18] Devarapalli N R, Baum C E, Christodoulou C G, et al. A fan-beam radiator using waveguide's narrow wall for horizontal polarization and high power[J]. IEEE Transactions on Electromagnetic Compatibility, 2011, 53(2): 380-389. doi: 10.1109/TEMC.2010.2099123 [19] Stevenson A F. Theory of slots in rectangular wave-guides[J]. Journal of Applied Physics, 1984, 19(1): 24-38. [20] Elliott R S, Kurtz L A. The design of small slot arrays[J]. IEEE Transactions on Antennas and Propagation, 1978, 26(2): 214-219. doi: 10.1109/TAP.1978.1141814 [21] Elliott R S. An improved design procedure for small arrays of shunt slots[J]. IEEE Transactions on Antennas and Propagation, 1983, 31(1): 48-53. doi: 10.1109/TAP.1983.1143002 [22] Elliott R S, O'Loughlin W R. The design of slot arrays including internal mutual coupling[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(9): 1149-1154. doi: 10.1109/TAP.1986.1143947 [23] Brown K W. Design of waveguide slotted arrays using commercially available finite element analysis software[C]//Antennas and Propagation Society International Symposium. 1996: 100-1003. [24] Wang Wei, Zhong Shunshi, Zhang Yumei, et al. A broadband slotted ridge waveguide antenna array[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(8): 2416-2420. doi: 10.1109/TAP.2006.879216 [25] Ebadi S, Semnani A. Mutual coupling reduction in waveguide-slot-array antennas using electromagnetic bandgap (EBG) structures[J]. IEEE Antennas and Propagation Magazine, 2014, 56(3): 68-79. doi: 10.1109/MAP.2014.6867683 [26] Liao Yong. Analysis of wide-angle scanning of high-power microwave waveguide slot array antenna[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2024, 19(2): 164-169. doi: 10.1002/tee.23946 [27] Khan A M, Ahmed M M, Rafique U, et al. Design, analysis and fabrication of an inside-grooved slotted waveguide array antenna for HPM applications[J]. IEEE Access, 2023, 11: 50116-50129. doi: 10.1109/ACCESS.2023.3277390 [28] Huang Cheng, Zhao Zeyu, Feng Qin, et al. Grooves-assisted surface wave modulation in two-slot array for mutual coupling reduction and gain enhancement[J]. IEEE Antennas and Wireless Propagation Letters, 2009, 8: 912-915. doi: 10.1109/LAWP.2009.2028587 [29] Vilas Boas E C, Mittra R, Cerqueira Sodre A. A low-profile high-gain slotted waveguide antenna array with grooved structures[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(12): 2107-2111. doi: 10.1109/LAWP.2020.3023698 [30] 钟顺时. 天线理论与技术[M]. 2版. 北京: 电子工业出版社, 2015Zhong Shunshi. Antenna theory and techniques[M]. 2nd ed. Beijing: Publishing House of Electronics Industry, 2015 [31] 徐锐敏, 唐璞, 薛正辉, 等. 微波技术基础[M]. 北京: 科学出版社, 2009Xu Ruimin, Tang Pu, Xue Zhenghui, et al. Basic of microwave technology[M]. Beijing: Science Press, 2009 [32] 王文祥. 微波工程技术[M]. 2版. 北京: 国防工业出版社, 2014Wang Wenxiang. Microwave engineering technology[M]. 2nd ed. Beijing: National Defense Industry Press, 2014 [33] El Misilmani H M, Al-Husseini M, Kabalan K Y, et al. A design procedure for slotted waveguide antennas with specified sidelobe levels[C]//2014 International Conference on High Performance Computing & Simulation (HPCS). 2014: 828-832. [34] 王建, 郑一农, 何子远, 等. 阵列天线理论与工程应用[M]. 北京: 电子工业出版社, 2015Wang Jian, Zheng Yinong, He Ziyuan, et al. Antenna array theory and engineering applications[M]. Beijing: Publishing House of Electronics Industry, 2015 [35] Jameson R A. High-brightness RF linear accelerators[M]//Hyder A K, Franklin Rose M, Guenther A H. NATO Advanced Science Institute on High-Brightness Accelerators. Pitlochry, Scotland: Springer, 1986: 169-199. [36] Yang Bo, Chen Xiaojie, Chu Jie, et al. A 5.8-GHz phased array system using power-variable phase-controlled magnetrons for wireless power transfer[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(11): 4951-4959. doi: 10.1109/TMTT.2020.3007187 [37] Pan Xuyuan, Christodoulou C G, Lawrance J, et al. Cold & hot tests of an S-band antenna for high power microwave systems[C]//2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. 2017: 627-628. [38] El Misilmani H M, Al-Husseini M, Kabalan K Y. Design procedure for planar slotted waveguide antenna arrays with controllable sidelobe level ratio for high power microwave applications[J]. Engineering Reports, 2020, 2: e12255. doi: 10.1002/eng2.12255 [39] El Misilmani H M, Al-Husseini M, Kabalan K Y. Design of slotted waveguide antennas with low sidelobes for high power microwave applications[J]. Progress in Electromagnetics Research C, 2015, 56: 15-28. doi: 10.2528/PIERC14121903 -