留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高能同步辐射光源用铁氧体高次模阻尼器的研制

陈欣 李晨 赵伟 向军 李天涛 黄刚 杨洁 刘平 秦臻

陈欣, 李晨, 赵伟, 等. 高能同步辐射光源用铁氧体高次模阻尼器的研制[J]. 强激光与粒子束, 2025, 37: 044008. doi: 10.11884/HPLPB202537.240278
引用本文: 陈欣, 李晨, 赵伟, 等. 高能同步辐射光源用铁氧体高次模阻尼器的研制[J]. 强激光与粒子束, 2025, 37: 044008. doi: 10.11884/HPLPB202537.240278
Chen Xin, Li Chen, Zhao Wei, et al. Development of ferrite high-order mode damper for High Energy Photon Source[J]. High Power Laser and Particle Beams, 2025, 37: 044008. doi: 10.11884/HPLPB202537.240278
Citation: Chen Xin, Li Chen, Zhao Wei, et al. Development of ferrite high-order mode damper for High Energy Photon Source[J]. High Power Laser and Particle Beams, 2025, 37: 044008. doi: 10.11884/HPLPB202537.240278

高能同步辐射光源用铁氧体高次模阻尼器的研制

doi: 10.11884/HPLPB202537.240278
基金项目: 国家自然科学基金项目(12205280)
详细信息
    作者简介:

    陈 欣,chenxin10698@126.com

    通讯作者:

    李 晨,st.eddie@163.com

  • 中图分类号: TL503.2

Development of ferrite high-order mode damper for High Energy Photon Source

  • 摘要: 大电流加速器束管中,当带电粒子流通过束管时,会在束管中激励起高频场影响束流大小和稳定性,还会在超导腔运行中带来额外的热损耗,影响超导腔本身运行的稳定性,所以必须对高次模进行有效控制。采用铁氧体为吸波材料吸收高次模,通过金属化和钎焊实现铁氧体与铜基板的焊接,然后与铜束管、冷却系统焊接获得铁氧体高次模阻尼器。使用CST软件仿真了铁氧体高次模阻尼器在不同频率下的微波性能,并与实测结果对比,发现在测试频段内可以有效抑制高次模,但是一定频段内两者的结果存在一定差异。使用COMSOL软件仿真了铁氧体高次模阻尼器工作时的温度分布状态,并与测试结果进行了比较;热测结果表明,吸收功率10.14 kW时,吸收效率达到77.4%。真空漏率、极限真空、水路耐压测试结果均满足超导高频腔设计需求。
  • 图  1  铁氧体高次模阻尼器在吸收功率为10 kW时温度分布仿真结果

    Figure  1.  Simulation results of temperature distribution for the high-order mode with an absorbed power of 10 kW

    图  2  高次模阻尼器结构示意图

    Figure  2.  Schematic of the ferrite high-order mode damper

    图  3  焊接质量效果图

    Figure  3.  Quality diagram of welding effects

    图  4  铁氧体高次模阻尼器的高功率测试装配图

    Figure  4.  High power test assembly diagram of ferrite high-order mode damper

    图  5  铁氧体高次模阻尼器仿真与实测吸收效率(无短路活塞)

    Figure  5.  Simulation and measurement of absorption efficiency of ferrite high-order mode damper (no short piston)

    图  6  不同吸收功率下进出口水的温升(约0.4 MPa)

    Figure  6.  Temperature rise of inlet and outlet water under different absorbed power (about 0.4MPa)

    图  7  不同输入功率下吸收功率及吸收效率

    Figure  7.  Absorption power and absorption efficiency under different input power

    表  1  高次模阻尼器主要的设计指标

    Table  1.   The main design metrics of the high-order mode damper

    working
    mode
    absorbed
    power/
    kW
    absorption
    efficiency
    absorbing
    material
    vacuum
    leak rates/
    (Pa·L·s−1)
    ultimate
    vacuum/
    Pa
    water-
    resistant/
    MPa
    temperature difference
    between the outlet
    and inlet cooling
    water/℃
    continuous wave ≥10 operating frequency band (0.6~3.0GHz)≥30%, critical frequency bands (0.8~1.5GHz)≥50% after welding, the surface of ferrite shall be clean and flat, without particle shedding or cracks ≤1×10−7 ≤6.5×10−8 ≥0.9 when the absorbed power is 10 kW, the temperature rise of the outlet and inlet cooling water is ≤ 5 ℃.
    下载: 导出CSV
  • [1] 周文中, 潘卫民, 葛锐, 等. 中国散裂中子源二期双spoke超导腔设计[J]. 强激光与粒子束, 2023, 35:034004 doi: 10.11884/HPLPB202335.220266

    Zhou Wenzhong, Pan Weimin, Ge Rui, et al. Design of the China Spallation Neutron Source phase II double spoke resonator[J]. High Power Laser and Particle Beams, 2023, 35: 034004 doi: 10.11884/HPLPB202335.220266
    [2] 蒲小云, 侯洪涛, 马震宇, 等. 上海光源500MHz超导腔水平测试[J]. 强激光与粒子束, 2019, 31:115104 doi: 10.11884/HPLPB201931.190163

    Pu Xiaoyun, Hou Hongtao, Ma Zhenyu, et al. Horizontal test of 500 MHz superconducting cavity for SSRF[J]. High Power Laser and Particle Beams, 2019, 31: 115104 doi: 10.11884/HPLPB201931.190163
    [3] 米正辉, 沙鹏, 孙毅, 等. BEPC Ⅱ国产500 MHz超导腔运行综述[J]. 强激光与粒子束, 2018, 30:085103 doi: 10.11884/HPLPB201830.170485

    Mi Zhenghui, Sha Peng, Sun Yi, et al. Operation of domestic 500 MHz superconducting cavity for BEPC Ⅱ[J]. High Power Laser and Particle Beams, 2018, 30: 085103 doi: 10.11884/HPLPB201830.170485
    [4] Hao Xuerui, Li Zhongquan, Ye Kuangkuang, et al. 500 MHz higher order mode damped cavity designed for 4th generation synchrotron radiation sources[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1040: 167273.
    [5] Wu Congfeng, Tang Yungai, Tan Mingsheng, et al. Research of the 499.8 MHz superconducting cavity system for HALF[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023, 1050: 168176.
    [6] Nishiwaki M, Akai K, Furuya T, et al. Developments of HOM dampers for SuperKEKB superconducting cavity[C]//Proceedings of SRF2013. 2013: 1058-1060.
    [7] Moffat D, Barnes P, Kirchgessner J, et al. Design and fabrication of a ferrite-lined HOM load for CESR-B[C]//Proceedings of International Conference on Particle Accelerators. 1993: 977-979.
    [8] Huang Tongming, Pan Weimin, Wang Guangwei, et al. The development of the 499.8MHz superconducting cavity system for BEPCII[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1013: 165649.
    [9] Xu Wencan, Conway Z A, Daly E, et al. High-power test results for a cylindrical-shell silicon carbide higher-order-mode damper[J]. Physical Review Accelerators and Beams, 2024, 27: 031601. doi: 10.1103/PhysRevAccelBeams.27.031601
    [10] Alesini D, Bellaveglia M, Cardelli F, et al. Realization and high power test of damped C-band accelerating structures[J]. Physical Review Accelerators and Beams, 2020, 23: 042001.
    [11] Tajima T, Asano K, Furuya T, et al. Bonding of a microwave-absorbing ferrite, TDK IB-004, with copper for the HOM damper of the KEK B-factory SC cavities[C]//Proceeding of the 6th Workshop on RF Superconductivity. 1993: 1914-1916.
    [12] Terui S, Ishibashi T, Shirai M, et al. Development of ferrite higher order mode damper for SuperKEKB vacuum system[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023, 1053: 168371.
    [13] Liu Zongkai, Chang Fuyu, Chang L H, et al. Design and optimization of the high order modes damper for a 1.5 GHz superconducting harmonic cavity[J]. IEEE Transactions on Applied Superconductivity, 2021, 31: 3500605.
    [14] Ego H, Tanaka H, Inagaki T, et al. Compact HOM-damping structure of a beam-accelerating TM020 mode rf cavity[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2024, 1064: 169418.
    [15] Hahn H, Ben-Zvi I, Belomestnykh S, et al. HOMs of the SRF electron gun cavity in the BNL ERL[J]. Physics Procedia, 2015, 79: 1-12.
    [16] Marhauser F. Next generation HOM-damping[J]. Superconductor Science and Technology, 2017, 30: 063002.
    [17] 陈欣, 李晨, 赵伟, 等. 加速器用铁氧体-碳化硅混合型高次模阻尼器的研制[J]. 强激光与粒子束, 2025, 37:024001 doi: 10.11884/HPLPB202537.240154

    Chen Xin, Li Chen, Zhao Wei, et al. Development of a ferrite-silicon carbide hybrid high-order mode damper for accelerators[J]. High Power Laser and Particle Beams, 2025, 37: 024001 doi: 10.11884/HPLPB202537.240154
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  99
  • HTML全文浏览量:  34
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-26
  • 修回日期:  2025-03-03
  • 录用日期:  2025-03-03
  • 网络出版日期:  2025-03-29
  • 刊出日期:  2025-04-15

目录

    /

    返回文章
    返回