留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国散裂中子源剥离膜温升与剥离电子研究

庞子西 黄明阳 陈佳鑫 吴煜文 杨涛 王生

庞子西, 黄明阳, 陈佳鑫, 等. 中国散裂中子源剥离膜温升与剥离电子研究[J]. 强激光与粒子束, 2025, 37: 014006. doi: 10.11884/HPLPB202537.240289
引用本文: 庞子西, 黄明阳, 陈佳鑫, 等. 中国散裂中子源剥离膜温升与剥离电子研究[J]. 强激光与粒子束, 2025, 37: 014006. doi: 10.11884/HPLPB202537.240289
Pang Zixi, Huang Mingyang, Chen Jiaxin, et al. Study on temperature rising of stripping foil and stripped electron of China Spallation Neutron Source[J]. High Power Laser and Particle Beams, 2025, 37: 014006. doi: 10.11884/HPLPB202537.240289
Citation: Pang Zixi, Huang Mingyang, Chen Jiaxin, et al. Study on temperature rising of stripping foil and stripped electron of China Spallation Neutron Source[J]. High Power Laser and Particle Beams, 2025, 37: 014006. doi: 10.11884/HPLPB202537.240289

中国散裂中子源剥离膜温升与剥离电子研究

doi: 10.11884/HPLPB202537.240289
基金项目: 国家自然科学基金项目(12075134);广东省基础与应用基础研究基金项目(2021B1515120021)
详细信息
    作者简介:

    庞子西,pangzx@ihep.ac.cn

    通讯作者:

    黄明阳,huangmy@ihep.ac.cn

  • 中图分类号: TL501

Study on temperature rising of stripping foil and stripped electron of China Spallation Neutron Source

  • 摘要: 负氢剥离注入是强流质子同步加速器累积束流的唯一可行性方案。目前中国散裂中子源(CSNS)采用负氢剥离方案为薄膜剥离注入。由负氢束流穿越剥离膜产生的能量沉积造成的膜片剧烈温升是影响剥离膜寿命和加速器稳定运行的关键问题。同时,剥离产生的高功率残余电子束会产生严重后果,包括:电子在膜中的电离作用造成膜温度升高;电子打在真空盒上造成真空盒热损伤;停留在真空管道中的电子可能被质子束流俘获,造成e-p不稳定性;产生的二次电子会引起严重的电子云效应。主要内容包括两部分:首先,利用有限元分析软件,考虑粒子通过剥离膜的平均穿越次数等参数,模拟剥离膜温升并对不同软件结果进行详细比较,得到剥离膜上的温度场分布,并对未来继续提高的束流功率做出膜表面温升的预测。其次,根据理论计算结果和蒙特卡罗程序Geant4模拟结果对剥离后电子分布进行分析,完善3D计算模型并综合考虑CSNS注入区的电磁场和束流条件,获得电子收集装置的合适位置,给出剥离电子收集方案。
  • 图  1  剥离膜结构图与束流偏转示意图

    Figure  1.  Diagram of stripping foil structure and beam deflection

    图  2  剥离后各产物占比与膜厚度的关系

    Figure  2.  Relationship between the proportion of each product and the thickness of the foil

    图  3  不同注入能量下电子和质子在剥离膜上的沉积能谱

    Figure  3.  Energy deposition of electrons and protons on the stripping foil under different injection energy

    图  4  开始注入束流后剥离膜上的温度变化

    Figure  4.  Temperature change of the stripping foil after injecting beam

    图  5  膜片上束流中心位置在注入期间的温度变化

    Figure  5.  Temperature change of the center of the beam on the foil during injection

    图  6  膜片上最高温度与循环质子束平均穿越次数的关系

    Figure  6.  Relationship between the maximum temperature of the foil and the average number of circulating proton beam crossings

    图  7  剥离前后电子的角散

    Figure  7.  Angle spread of electrons before and after stripping

    图  8  剥离膜附近的平面结构示意图

    Figure  8.  Schematic diagram of the plane structure

    图  9  剥离膜附近的机械结构图

    Figure  9.  Schematic diagram of the mechanical structure

    图  10  BCH2/3 的复合漏场

    Figure  10.  Compound leakage magnetic field of BCH2/3

    图  11  不同注入时间下电子在真空盒表面的分布

    Figure  11.  Distribution of electrons on the vacuumbox at different injection time

    表  1  反应微分截面[6]

    Table  1.   Reaction differential cross-section

    energy/MeV ${\sigma _{ - 1,0}}/({10^{ - 18}}\;{\text{c}}{{\text{m}}^{\text{2}}})$ $ {\sigma _{ - 1,1}}/({10^{ - 18}}\;{\text{c}}{{\text{m}}^{\text{2}}}) $ ${\sigma _{0,1}}/({10^{ - 18}}\;{\text{c}}{{\text{m}}^{\text{2}}})$
    80 3.170 0.0560 1.240
    300 1.216 0.0214 0.476
    下载: 导出CSV

    表  2  粒子沉积能量

    Table  2.   Deposition energy of particles

    injection energy/MeV particle deposition energy of particle/(MeV·cm2·g−1)
    theoretical result NIST database Geant4 result
    80 electron 6.364 6.497 6.873
    proton 7.710 7.678 7.714
    300 electron 2.730 2.745 2.733
    proton 3.149 3.126 3.045
    下载: 导出CSV

    表  3  剥离电子及其收集器参数

    Table  3.   Parameters of stripped electrons and collection instrument

    angle
    spread/rad
    beam
    size/mm
    central particle
    energy/keV
    pulse
    width/μs
    magnetic
    strength/T
    diffuse beam
    size/mm
    collection
    efficiency/%
    collection
    power/W
    0.073 1.5×1.5 163.2588 500 0.018(±0.23%) 60×130 99.95 101.35
    下载: 导出CSV
  • [1] Huang Mingyang, Wang Sheng, Qiu Jing, et al. Effects of injection beam parameters and foil scattering for CSNS/RCS[J]. Chinese Physics C, 2013, 37: 067001. doi: 10.1088/1674-1137/37/6/067001
    [2] Sugai I, Takeda Y, Oyaizu M, et al. Development of thick hybrid-type carbon stripper foils with high durability at 1800 K for RCS of J-PARC[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 561(1): 16-23.
    [3] Huang Mingyang, Xu Shouyan, Chen Jiaxin, et al. Study on the H stripping injection for the rapid cycling synchrotron of the China Spallation Neutron Source[J]. Radiation Detection Technology and Methods, 2022, 6(2): 201-208. doi: 10.1007/s41605-022-00326-4
    [4] 黄明阳, 许守彦, 卢晓含, 等. 中国散裂中子源加速器注入束流损失调节研究[J]. 原子能科学技术, 2019, 53(9):1708-1714 doi: 10.7538/yzk.2019.53.09.1708

    Huang Mingyang, Xu Shouyan, Lu Xiaohan, et al. Study on injection beam loss for China Spallation Neutron Source accelerator[J]. Atomic Energy Science and Technology, 2019, 53(9): 1708-1714 doi: 10.7538/yzk.2019.53.09.1708
    [5] Potts C W. Negative hydrogen ion injection into the zero gradient synchrotron[J]. IEEE Transactions on Nuclear Science, 1977, 24(3): 1385-1389. doi: 10.1109/TNS.1977.4328953
    [6] Chou W, Kostin M, Tang Zhijing. Stripping efficiency and lifetime of carbon foils[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2008, 590(1/3): 1-12.
    [7] Lebedev S G, Lebedev A S. Calculation of the lifetimes of thin stripper targets under bombardment of intense pulsed ions[J]. Physical Review Accelerators and Beams, 2008, 11: 020401. doi: 10.1103/PhysRevSTAB.11.020401
    [8] Plum M A, Holmes J, Shaw R W, et al. SNS stripper foil development program[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2008, 590(1/3): 43-46.
    [9] Smith H V, Adams D J, Jones B, et al. Stripping foil simulations for ISIS injection upgrades[C]//Proceedings of the Second International Particle Accelerator Conference. 2011: 3556-3558.
    [10] Wang Lanfa, Lee Y Y, Mahler G, et al. Stripped electron collection at the Spallation Neutron Source[J]. Physical Review Accelerators and Beams, 2005, 8: 094201. doi: 10.1103/PhysRevSTAB.8.094201
    [11] Plum M A, Cousineau S M, Galambos J, et al. Stripper foil failure modes and cures at the Oak Ridge Spallation Neutron Source[J]. Physical Review Accelerators and Beams, 2011, 14: 030102. doi: 10.1103/PhysRevSTAB.14.030102
    [12] Shirakata M J, Fujimori H, Irie Y, et al. Particle tracking study of the injection process with field interferences in a rapid cycling synchrotron[J]. Physical Review Accelerators and Beams, 2008, 11: 064201. doi: 10.1103/PhysRevSTAB.11.064201
    [13] Saha P K, Yoshimoto M, Yamazaki Y, et al. Measurement of 181 MeV H ions stripping cross-sections by carbon stripper foil[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 776: 87-93.
    [14] 汪晓莲, 李澄, 邵明, 等. 粒子探测技术[M]. 安徽: 中国科学技术大学出版社, 2009: 12-42

    Wang Xiaolian, Li Cheng, Shao Ming, et al. Particle detection technology[M]. Anhui: University of Science and Technology of China Press, 2009: 12-42
    [15] Agostinelli S, Allison J, Amako K, et al. GEANT4-a simulation toolkit[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 506(3): 250-303.
    [16] Berger M J, Coursey J S, Zucker M A, et al. Stopping-power& range tables for electrons, protons, and helium ions[EB/OL]. [2024-08-25]. https://www.nist.gov/pml/stopping-power-range-tables-electrons-protons-and-helium-ions.
    [17] Liaw C J, Lee Y Y, Alessi J, et al. Calculation of the maximum temperature on the carbon stripping foil of the Spallation Neutron Source[C]//Proceedings of 1999 Particle Accelerator Conference. 1999: 3300-3302.
    [18] Huang Mingyang, Xu Shouyan, An Yuwen, et al. Study on the anti-correlated painting injection scheme for the Rapid Cycling Synchrotron of the China Spallation Neutron Source[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1007: 165408. doi: 10.1016/j.nima.2021.165408
    [19] Lee Y, Mahler G, Meng W, et al. SNS ring injection stripped electron collection: design analysis and technical issues[C]//Proceedings of 2005 Particle Accelerator Conference. 2005: 2384-2386.
    [20] Cousineau S, Holmes J A, Plum M A, et al. Dynamics of uncaught foil-stripped electrons in the Oak Ridge Spallation Neutron Source accumulator ring[J]. Physical Review Accelerators and Beams, 2011, 14: 064001. doi: 10.1103/PhysRevSTAB.14.064001
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  145
  • HTML全文浏览量:  52
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-28
  • 修回日期:  2024-11-27
  • 录用日期:  2024-11-29
  • 网络出版日期:  2024-12-14
  • 刊出日期:  2025-12-13

目录

    /

    返回文章
    返回