K-band high-power microwave variable-polarization antenna with variable inclination continuous transverse stub antenna
-
摘要: 提出了一种基于可变倾角连续横向枝节(VICTS)天线和多层全金属十字开孔透镜的变极化波束扫描方案,通过调整极化层、辐射层以及天线整体的旋转角度,即可实现线极化和左(右)旋圆极化的自由切换,并可实现不同极化输出下的二维波束扫描。设计了一个K波段口径150 mm的天线模型,仿真得到天线圆极化辐射时的最大增益为27.61 dB,轴比为1.05 dB,口径效率为58.7%;波束扫描至26°时,增益为25.72 dB,轴比为2.58 dB。线极化辐射时的最大增益为27.63 dB,口径效率为58.7%;波束扫描至26°时,增益为25.82 dB。按真空中金属击穿阈值50 MV/m进行计算,VICTS天线的功率容量为9.6 GW/m2,极化层的功率容量超过10 GW/m2,该变极化波束扫描天线方案有应用于高功率微波领域的潜力。
-
关键词:
- 全金属极化器 /
- 变倾角连续横向枝节天线 /
- 极化可调天线 /
- 二维波束扫描 /
- 高功率微波
Abstract: A variable polarization beam scanning antenna based on variable inclination continuous transverse stub antenna (VICTS) antenna and multi-layer all metal cross hole lens is proposed. By adjusting the rotation angles of the polarization layer, radiation layer, and antenna as a whole, free switching between linear polarization and left-hand (right-hand) circular polarization can be achieved, and two-dimensional beam scanning under different polarization outputs can be realized. A K-band antenna with a diameter of 150 mm was designed and simulated. The results show that the maximum gain of the circularly polarized radiation is 27.61 dB, the axial ratio is 1.05 dB, and the aperture efficiency is 58.7%; When the beam is scanned to 26°, the gain is 25.72 dB and the axial ratio is 2.58 dB. The maximum gain of linearly polarized radiation is 27.6 dB, and the aperture efficiency is 58.7%; When the beam is scanned to 26°, the gain is 25.82 dB. According to the metal breakdown threshold of 50 MV/m in vacuum, the power capacity of the VICTS antenna is 9.6 GW/m2, and the power capacity of the polarization layer exceeds 10 GW/m2. This variable polarization beam scanning antenna has the potential to be applied in the high-power microwave field. -
表 1 VICTS天线在不同γ情况下的波束指向和增益情况
Table 1. VICTS antenna gain and AR with different γ
γ/(°) θ/(°) φ/(°) initial gain/dB LP gain/dB CP gain/dB AR/dB 0 0 0 27.83 27.63 27.61 1.05 5 5 2.5 27.74 27.60 27.56 1.28 10 9 5.0 27.60 27.46 27.43 1.68 15 15 5.0 26.71 26.27 26.23 1.81 20 21 7.5 26.58 26.07 25.98 2.54 25 26 9.0 26.64 25.82 25.72 2.58 -
[1] 杨一明, 袁成卫, 钱宝良. 波导缝隙阵列天线高功率微波应用探索[J]. 强激光与粒子束, 2013, 25(10):2648-2652 doi: 10.3788/HPLPB20132510.2648Yang Yiming, Yuan Chengwei, Qian Baoliang. Beam steering antenna for high power microwave application[J]. High Power Laser and Particle Beams, 2013, 25(10): 2648-2652 doi: 10.3788/HPLPB20132510.2648 [2] Yang Yiming, Yuan Chengwei, Qian Baoliang. A beam steering antenna for X-band high power applications[J]. AEU - International Journal of Electronics and Communications, 2014, 68(8): 763-766. doi: 10.1016/j.aeue.2014.03.002 [3] 马嘉雯, 孙云飞, 宛建峰, 等. 高功率谐振式波导缝隙阵宽角扫描技术[J]. 强激光与粒子束, 2021, 33:103002 doi: 10.11884/HPLPB202133.210307Ma Jiawen, Sun Yunfei, Wan Jianfeng, et al. Investigation on wide-angle scanning technology for high power resonant waveguide slot array antenna[J]. High Power Laser and Particle Beams, 2021, 33: 103002 doi: 10.11884/HPLPB202133.210307 [4] Yu Longzhou, Yuan Chengwei, He Juntao, et al. Beam steerable array antenna based on rectangular waveguide for high-power microwave applications[J]. IEEE Transactions on Plasma Science, 2019, 47(1): 535-541. doi: 10.1109/TPS.2018.2884290 [5] 刘东琪, 袁成卫, 孙云飞, 等. 基于空间馈电的高功率波束扫描螺旋透射阵列天线设计[J]. 强激光与粒子束, 2024, 36:013007 doi: 10.11884/HPLPB202436.230330Liu Dongqi, Yuan Chengwei, Sun Yunfei, et al. Investigation on transmission array antenna with high power beam scanning based on spiral antenna[J]. High Power Laser and Particle Beams, 2024, 36: 013007 doi: 10.11884/HPLPB202436.230330 [6] Li Xiangqiang, Liu Qingxiang, Zhao Liu, et al. The high-power radial line helical array antenna[C]//Proceedings of 2008 World Automation Congress. 2008: 1-5. [7] Zhao Xuhao, Yuan Chengwei, Zhang Jiande, et al. Design of a beam scanning metamaterial antenna with polarization transform for high power microwave application[J]. Microwave and Optical Technology Letters, 2020, 62(10): 3255-3265. doi: 10.1002/mop.32443 [8] Zhao Xuelong, Yuan Chengwei, Liu Lie, et al. All-metal beam steering lens antenna for high power microwave applications[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 7340-7344. [9] Zhao Xuelong, Yuan Chengwei, Liu Lie, et al. All-metal transmit-array for circular polarization design using rotated cross-slot elements for high-power microwave applications[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(6): 3253-3256. [10] 徐刚, 李才阳, 张现福, 等. X波段极化可重构高功率微波辐射器仿真设计[J]. 强激光与粒子束, 2015, 27:103221 doi: 10.11884/HPLPB201527.103221Xu Gang, Li Caiyang, Zhang Xianfu, et al. X-band high power microwave launcher with polarization reconfigurable capacity[J]. High Power Laser and Particle Beams, 2015, 27: 103221 doi: 10.11884/HPLPB201527.103221 [11] 文忠, 袁龙, 郭庆功. 基于回折线极化器技术的VICTS天线全极化可调实现[J]. 四川大学学报(自然科学版), 2020, 57(6):1110-1115Wen Zhong, Yuan Long, Guo Qinggong. A meanderline-based polarizer technique for the implementation of a full-polarization tunable of VICTS antennas[J]. Journal of Sichuan University (Natural Science Edition), 2020, 57(6): 1110-1115 [12] 王安康. 基于波导结构的缝隙阵列及连续切向节阵列天线研究[D]. 西安: 西安电子科技大学, 2020: 71-96Wang Ankang. Research on slot array and continuous transverse stub array antennas based on waveguide structures[D]. Xi’an: Xidian University, 2020: 71-96 [13] Hao Ruisen, Cheng Yujian, Wu Yafei. Shared-aperture variable inclination continuous transverse stub antenna working at K- and Ka-bands for mobile satellite communication[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(9): 6656-6666. doi: 10.1109/TAP.2020.2984337 [14] You Yang, Lu Yunlong, Xu Jun, et al. High gain monopulse variable inclination continuous transverse stub antenna for satellite-aided vehicular communications[J]. IEEE Internet of Things Journal, 2022, 9(23): 24346-24356. doi: 10.1109/JIOT.2022.3188523 [15] Wang Ankang, Yang Lin, Yi Xiangjie, et al. Wireless communication applications of the variable inclination continuous transverse stub array for Ku-band applications[J]. IET Microwaves, Antennas & Propagation, 2021, 15(6): 644-652. [16] Clendinning S, Cahill R, Zelenchuk D, et al. Bandwidth optimization of linear to circular polarization convertors based on slot FSS[J]. Microwave and Optical Technology Letters, 2019, 61(5): 1200-1207. doi: 10.1002/mop.31742 [17] Liu Nanfeng, Cheng Yujian, Wu Yafei. K/Ka dual-band dual-circular-polarized coplanar phased array antenna with high isolation for satellite communication[C]//Proceedings of 2020 International Conference on Microwave and Millimeter Wave Technology. 2020: 1-3. [18] Zhao X, Yuan C, Zhang Q. All-metal polarization conversion metamaterial lens for high power microwave application[C]//ICEAA-IEEE APWC. 2019. [19] 周哲. 高功率极化转换天线罩与圆极化相移表面研究[D]. 成都: 西南交通大学, 2019: 25-44Zhou Zhe. Research on high-power polarization conversion radome and circularly polarized phase shift surface[D]. Chengdu: Southwest Jiaotong University, 2019: 25-44 [20] 黄贵春. 高功率线极化螺旋阵列天线关键技术研究[D]. 成都: 西南交通大学, 2022: 17-29Huang Guichun. Research on key technologies of high-power linearly polarized helical array antennas[D]. Chengdu: Southwest Jiaotong University, 2022: 17-29 -