Effect of plasma on transmission characteristics of high-frequency microwave
-
摘要: 研究高频微波在等离子体中的传输特性能有效地分析评估在微波通信和雷达技术中信息的传递过程。通过使用数值仿真的方法分析了等离子体电子密度、厚度及入射波频率对微波反射、吸收和透射的影响。结果显示,等离子体厚度和电子密度增加会导致吸收增强、透射减弱;且反射会随厚度降低和电子密度升高而微弱升高;高频微波更易于穿透等离子体,透射随频率提高而增强。此外,研究结果表明电子密度不仅能影响能量的传输,还会影响电磁波波形,使其展宽。高密度等离子体会明显导致微波波形时空上延展增宽,非弹性碰撞使得增宽现象明显。波形的改变规律能对雷达回波和微波通信所携带信息的复原工作提供一定的理论支撑。Abstract: Studying the transmission characteristics of high-frequency microwaves in plasma can effectively analyze and assess the information transfer process in microwave communication and radar technology. Numerical simulations were employed to analyze the effects of plasma electron density, thickness, and incident wave frequency on microwave reflection, absorption, and transmission. The results indicate that increased plasma thickness and electron density lead to enhanced absorption and reduced transmission; reflection increases slightly with decreased thickness and increased electron density. High-frequency microwaves are more easily transmitted through plasma, with transmission enhancing as frequency increases. Furthermore, the research shows that electron density not only affects energy transmission but also alters the electromagnetic wave shape, causing it to broaden. High-density plasma significantly broaden microwave waveforms both spatially and temporally, with inelastic collisions contributing prominently to this broadening. The patterns of waveform changes can provide theoretical support for the restoration of information carried by radar echoes and microwave communications.
-
表 1 不同等离子体厚度时反射、吸收、透射
Table 1. Reflection, absorption and transmission in different plasma thickness
plasma thickness/mm reflectivity/% absorptivity/% transmissivity/% 20 1.2 74.8 24.0 26 0.9 91.1 8.10 -
[1] Poorreza E, Gargari N D. Modeling and simulation of a microwave-assisted plasma with different input power for plasma-based applications[J]. Russian Journal of Physical Chemistry B, 2023, 17(3): 719-724. doi: 10.1134/S1990793123030235 [2] Ikeda Y, Soriano J K, Kawahara N, et al. Spatially and temporally resolved plasma formation on alumina target in microwave-enhanced laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2022, 197: 106533. doi: 10.1016/j.sab.2022.106533 [3] Zhang Chaoyang, Fu Wenjie, Hu Shijie, et al. Investigation on continuous and modulated microwave plasma filaments at atmospheric pressure[J]. IEEE Access, 2021, 9: 154318-154323. doi: 10.1109/ACCESS.2021.3128610 [4] Barnes B K, Ouro-Koura H, Derickson J, et al. Plasma generation by household microwave oven for surface modification and other emerging applications[J]. American Journal of Physics, 2021, 89(4): 372-282. doi: 10.1119/10.0002706 [5] Zhao Chengwei, Li Xiaoping, Liu Yanming, et al. Research on plasma electron density distribution based on microwave diffraction[J]. Plasma Sources Science and Technology, 2022, 31: 015007. doi: 10.1088/1361-6595/ac39ad [6] Ye Xin, Wang Yongge, Yao Jingfeng, et al. Plasma-enabled microwave modulation for continuous beam scanning[J]. Journal of Physics D: Applied Physics, 2022, 55: 435202. doi: 10.1088/1361-6463/ac8da1 [7] Zhang Jianwei, Luo Wei, Jiang Ming, et al. Plasma propagation in the microwave window breakdown at the air/dielectric interface[J]. Plasma Sources Science and Technology, 2020, 29: 025013. doi: 10.1088/1361-6595/ab6e59 [8] Mu Xiangchao, Dong Guoxiang, Li Xiaoping, et al. Analysis of the electromagnetic wave transmission characteristics in inhomogeneous plasma based on an equivalent circuit model[J]. IEEE Transactions on Plasma Science, 2024, 52(3): 698-706. doi: 10.1109/TPS.2024.3371100 [9] Noori E. Investigation of near cut-off properties of electromagnetic wave propagation in homogeneous, collisional plasma slab[J]. Contributions to Plasma Physics, 2022, 62: e202200016. doi: 10.1002/ctpp.202200016 [10] Zhang Chaoyang, Chen Chi, Fu Wenjie, et al. Investigation on the microwave excited plasma filament at atmospheric pressure[J]. IEEE Transactions on Plasma Science, 2021, 49(6): 1877-1881. doi: 10.1109/TPS.2021.3075574 [11] Zhao Yuexing, Su Ruiming, Ma Jinping, et al. SO-FDTD simulation on the transmission characteristics of terahertz waves in inhomogeneous magnetized dusty plasma[J]. The European Physical Journal D, 2024, 78: 32. doi: 10.1140/epjd/s10053-024-00824-8 [12] Wan Xiaohuan, Zhou Zhikun, Zhang Juan, et al. Propagation characteristics of obliquely incident terahertz waves in high-temperature magnetized plasma[J]. IEEE Transactions on Plasma Science, 2022, 50(2): 241-249. doi: 10.1109/TPS.2021.3139373 [13] Zhou Zhikun, Wan Xiaohuan, Zhang Juan, et al. Influence of temperature on terahertz waves propagating in magnetized plasma[J]. Physica Scripta, 2021, 96: 075607. doi: 10.1088/1402-4896/abfcf1 [14] Shen Fangfang, Zhang Zhongdao, Bai Bowen, et al. Research on the reflection characteristics of the broadband electromagnetic wave in nonuniform plasma[J]. IEEE Transactions on Plasma Science, 2024, 52(3): 657-665. doi: 10.1109/TPS.2024.3373645 [15] Zhang Jie, Li Miao, Han Bing. Analysis of electromagnetic waves reflected by re-entry plasma sheath based on CSO-FDTD[J]. Physica Scripta, 2023, 98: 095610. doi: 10.1088/1402-4896/acf0f9 [16] Zhang Youyi, Xu Guanjun, Zheng Zhengqi. Terahertz waves propagation in an inhomogeneous plasma layer using the improved scattering-matrix method[J]. Waves in Random and Complex Media, 2021, 31(6): 2466-2480. doi: 10.1080/17455030.2020.1757177 [17] Lyu Xingbao, Yuan Chengxun, Avtaeva S, et al. Attenuation of microwave radiation by post-anode plasma in a composite grid electrode structure[J]. IEEE Access, 2022, 10: 7675-7683. doi: 10.1109/ACCESS.2022.3143582 [18] Vhanmore B D, Rajmane S P, Sadale S B, et al. Dominance of polarization modes and absorption on self-focusing of laser beams in collisionless magnetized plasma[J]. Journal of Nonlinear Optical Physics & Materials, 2024. [19] Chen Peiqi, Nie Qiuyue, Zhang Zhonglin, et al. Integrative implementation of scattering reduction and radiation enhancement for an electrically small antenna by subwavelength plasmas[J]. Physics of Plasmas, 2024, 31: 073503. doi: 10.1063/5.0211317 [20] Metelskii I I, Kovalev V F, Bychenkov V Y. Nonlinear laser radiation absorption due to relativistic plasma resonance in an inhomogeneous plasma[J]. Journal of Experimental and Theoretical Physics, 2021, 133(2): 236-252. doi: 10.1134/S1063776121080069 [21] Sun Jinhai, Zhao Yarui, Yin Hongcheng, et al. An open simulation model for terahertz wave transmission in plasma[J]. Journal of Applied Physics, 2024, 135: 153104. doi: 10.1063/5.0199442 [22] Desai M, Ghosh P, Kumar A, et al. Deep-learning architecture-based approach for 2-D-simulation of microwave plasma interaction[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(12): 5359-5368. doi: 10.1109/TMTT.2022.3217138 [23] Janicek A, Thornton E, Garrett T, et al. Length dependence on broadband microwave emission from laser-generated plasmas[J]. IEEE Transactions on Plasma Science, 2020, 48(6): 1979-1983. doi: 10.1109/TPS.2020.2988762 [24] Chang Qi, Ma Yunpeng, Liu Ji, et al. Simulation of electromagnetic waves in plasma by subdomain-level nonconformal DGTD method[J]. IEEE Transactions on Plasma Science, 2022, 50(11): 4775-4781. doi: 10.1109/TPS.2022.3214215 [25] Zhou Zhikun, Wan Xiaohuan, Li Xiaolin, et al. SO-FDTD analysis on transmission characteristics of terahertz wave in plasma[J]. Physics of Plasmas, 2021, 28: 072105. doi: 10.1063/5.0053611 [26] Wang Ge, Pan Hui, Lai Shimiao, et al. Dynamic measurement of relative complex permittivity of microwave plasma at atmospheric pressure[J]. Processes, 2021, 9: 1812. doi: 10.3390/pr9101812 [27] Yao Jingfeng, Yu Zhi, Yuan Chengxun, et al. The influence of plasma distribution on microwave reflection in a plasma-metal model[J]. IEEE Transactions on Plasma Science, 2020, 48(2): 359-363. doi: 10.1109/TPS.2019.2943519 [28] Liu Yanming, Zhang Xi, Bai Bowen, et al. A calculation method of electromagnetic wave reflection in plasma sheath environment[J]. IEEE Transactions on Plasma Science, 2022, 50(7): 2030-2038. doi: 10.1109/TPS.2022.3181220 [29] Zhang Chaoyang, Lu Dun, Hu Shijie, et al. An economic real-time microwave plasma impedance measurement method[J]. IEEE Transactions on Plasma Science, 2021, 49(11): 3503-3508. doi: 10.1109/TPS.2021.3115846 [30] Pak I H, Kim Y H, Oh C H, et al. Transmission characteristics of electromagnetic waves in a semicircular plasma filament layer generated by a femtosecond laser[J]. Contributions to Plasma Physics, 2021, 61: e202100032. doi: 10.1002/ctpp.202100032 [31] 王彦同, 帕提曼·阿不都玛洪, 石雁祥, 等. 弱电离尘埃等离子体微波衰减理论的实验研究[J]. 电波科学学报, 2020, 35(6):967-973Wang Yantong, Abudoumahong P, Shi Yanxiang, et al. Experimental study on microwave attenuation theory of weakly ionized dusty plasma[J]. Chinese Journal of Radio Science, 2020, 35(6): 967-973 [32] Moshkov A V, Pozhidaev V N. Numerical simulation of very-low-frequency waves passing through the magnetoactive plane-layered plasma of earth's lower ionosphere[J]. Journal of Communications Technology and Electronics, 2020, 65(5): 472-479. doi: 10.1134/S1064226920050101 [33] Ma Zhu, Wei Min, Li Meng, et al. Study on electromagnetic characteristics of plasma model-based on the symplectic multiresolution time-domain scheme[J]. Modern Physics Letters B, 2020, 34: 2050046. [34] Bao Yu, He Xiang, Su Wei, et al. Study on the generation of terahertz waves in collision plasma[J]. Physics of Plasmas, 2024, 31: 093302. doi: 10.1063/5.0219947 [35] 潘惠, 王舸, 杨阳. 大气压微波等离子体射流装置放电特性研究[J]. 强激光与粒子束, 2022, 34:049001 doi: 10.11884/HPLPB202234.210277Pan Hui, Wang Ge, Yang Yang. Design and study of atmospheric pressure microwave plasma jet[J]. High Power Laser and Particle Beams, 2022, 34: 049001 doi: 10.11884/HPLPB202234.210277 [36] 陈煜青, 王蕾, 赵立山, 等. 等离子体鞘套低频通信电磁波透射率与辐照微波场强关系仿真研究[J]. 强激光与粒子束, 2023, 35:089001 doi: 10.11884/HPLPB202335.220361Chen Yuqing, Wang Lei, Zhao Lishan, et al. Simulation study of the relationship between low-frequency communication EM wave transmissivity of plasma sheaths and irradiation microwave E-field strength[J]. High Power Laser and Particle Beams, 2023, 35: 089001 doi: 10.11884/HPLPB202335.220361