留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于伪衰变核形成的燃耗数据库压缩方法

汤兴民 张滕飞 张斌 王连杰 刘晓晶

汤兴民, 张滕飞, 张斌, 等. 基于伪衰变核形成的燃耗数据库压缩方法[J]. 强激光与粒子束, 2025, 37: 026002. doi: 10.11884/HPLPB202537.240307
引用本文: 汤兴民, 张滕飞, 张斌, 等. 基于伪衰变核形成的燃耗数据库压缩方法[J]. 强激光与粒子束, 2025, 37: 026002. doi: 10.11884/HPLPB202537.240307
Tang Xingmin, Zhang Tengfei, Zhang Bin, et al. Burnup lib compression method based on pseudo decay nuclides definement[J]. High Power Laser and Particle Beams, 2025, 37: 026002. doi: 10.11884/HPLPB202537.240307
Citation: Tang Xingmin, Zhang Tengfei, Zhang Bin, et al. Burnup lib compression method based on pseudo decay nuclides definement[J]. High Power Laser and Particle Beams, 2025, 37: 026002. doi: 10.11884/HPLPB202537.240307

基于伪衰变核形成的燃耗数据库压缩方法

doi: 10.11884/HPLPB202537.240307
基金项目: 国家自然科学基金面上项目(12205283、12175138)
详细信息
    作者简介:

    汤兴民, Lucky_Kevin@sjtu.edu.cn

    通讯作者:

    张滕飞, zhangtengfei@sjtu.edu.cn

  • 中图分类号: TL329.2

Burnup lib compression method based on pseudo decay nuclides definement

  • 摘要: 燃耗数据库的构建决定了燃耗和衰变热计算的准确性,评价核数据库中的燃耗信息过于复杂,导致燃耗矩阵规模大,刚性强,计算效率低。从燃耗数据库的基本组成出发,考虑燃耗数据库中,各核素及其转化关系对中子学计算精度和重要核素核子密度计算精度的影响,并作为燃耗库压缩的依据。对于因裂变产物压缩而损失的衰变热计算精度,通过非线性最小二乘优化算法拟合衰变释热函数,构造伪衰变核代替裂变产物衰变热计算,以保持衰变热的计算精度。验证结果表明,原精细燃耗库中有超过1 500种核素,经压缩后保留不足200种核素。压缩后的燃耗数据库在有效增殖因子计算和核子密度计算中并未引入明显偏差。在衰变热计算方面,伪衰变核对于衰变热计算精度有显著的复原效果,对总功率贡献的计算偏差小于0.5%,满足衰变热计算精度的需求。
  • 图  1  燃耗数据库压缩方法框架

    Figure  1.  Framework of burnup lib compression

    图  2  L-M算法搜索框架

    Figure  2.  Search framework of the L-M algorithm

    图  3  衰变释热曲线拟合结果

    Figure  3.  Fitting results of the decay heat curve

    图  4  不同燃耗库中Gd-155的计算结果

    Figure  4.  Gd-155 calculation result with different burnup lib

    图  5  VERA_1A中衰变热计算结果

    Figure  5.  Calculated decay heat in VERA_1A

    表  1  VERA_1A燃料栅元初始材料明细

    Table  1.   Specification of initial load materials in VERA_1A

    material nuclides atom density/(1024 cm−3)
    fuel (3.1%) U234 6.11864E-06
    U235 7.18132E-04
    U236 3.29861E-06
    U238 2.21546E-02
    O16 4.57642E-02
    moderator 565 K O16 2.48112E-02
    H1 4.96224E-02
    B10 1.07070E-05
    B11 4.30971E-05
    下载: 导出CSV

    表  2  最终选取的目标核素

    Table  2.   Final selected target nuclides

    target nuclides
    actinidesfission products
    U-235U-236U-238Kr-85Sr-90Y-90Mo-95Tc-99Ru-101
    U-239Np-237Np-239Rh-103Pd-105Pd-108Xe-131Xe-135mCs-133
    Pu-238Pu-239Pu-240Cs-134Cs-134mCs-137Ba-137Nd-145Pm-147
    Pu-241Pu-242Am-241Pm-148mPr-141Nd-143La-141Sm-147Sm-149
    Am-243Cm-242Cm-244Sm-150Sm-151Sm-152Eu-153Eu-154Eu-157
    Cm-246Gd-155Pm-150
    下载: 导出CSV

    表  3  压缩燃耗数据库明细

    Table  3.   Specification of the compressed burnup lib

    burnup lib ${\varepsilon _1},{\varepsilon _2}$ number of
    nuclides
    number of fission
    products
    number of decay
    channels
    number of neutron
    reaction channels
    fine_lib 1547 1137 1341 1626
    VERA_36H179 1E-6, 1E-3 179 142 138 364
    VERA_36H151 5E-6, 1E-3 151 114 122 324
    VERA_36H138 1E-5, 1E-3 138 101 119 298
    VERA_34H133 1E-5, 1E-2 133 98 113 292
    下载: 导出CSV

    表  4  有效增殖因子计算偏差的最大值与均方根

    Table  4.   Maximum value and root mean square (RMS) value of keff deviation

    maximum keff deviation/10−5 RMS of keff deviation/10−5
    fine_lib VERA_36H179 VERA_34H133 fine_lib VERA_36H179 VERA_34H133
    VERA_1A 202.07 201.79 200.77 93.72 93.64 92.40
    VERA_1B 280.45 281.39 280.30 109.65 108.88 107.94
    VERA_1C 273.52 274.47 273.39 115.27 114.90 113.87
    VERA_1D 290.05 293.17 292.35 123.77 124.16 123.13
    下载: 导出CSV

    表  5  目标核素核子密度计算误差均方根值

    Table  5.   Root mean square (RMS) value of target nuclides densities deviation

    RMS/%
    fine_lib VERA_36H179 VERA_34H133
    0.8
    GWd/tHM
    20.0
    GWd/tHM
    60.0
    GWd/tHM
    0.8
    GWd/tHM
    20.0
    GWd/tHM
    60.0
    GWd/tHM
    0.8
    GWd/tHM
    20.0
    GWd/tHM
    60.0
    GWd/tHM
    VERA_1A 1.77 1.69 1.97 1.14 1.12 2.91 1.33 1.35 5.46
    VERA_1B 1.74 1.72 2.00 1.37 1.40 3.15 1.52 1.54 5.85
    VERA_1C 1.74 1.71 1.98 1.49 1.52 3.24 1.65 1.66 5.86
    VERA_1D 1.72 1.74 2.01 1.60 1.63 3.28 1.67 1.69 5.71
    下载: 导出CSV

    表  6  计算内存开销与计算时间

    Table  6.   Calculating memory overhead and computation time

    calculating memory overhead/MB computation time/ms
    fine_lib 4.060 160
    VERA_36H179 0.535 16
    VERA_34H133 0.407 12
    下载: 导出CSV

    表  7  衰变热对功率的贡献

    Table  7.   Decay heat contribution to the power

    decay heat contribution/%
    fine_lib VERA_36H179_16 deviation fine_lib VERA_36H179_16 deviation fine_lib VERA_36H179_16 deviation
    0.8 GWd/tHM 20.0 GWd/tHM 60.0 GWd/tHM
    VERA_1A 6.37 6.00 −0.37 6.14 5.79 −0.35 6.16 5.69 −0.47
    VERA_1B 6.39 6.01 −0.38 6.39 6.01 −0.38 6.18 5.70 −0.48
    VERA_1C 6.40 6.02 −0.38 6.40 6.02 −0.38 6.16 5.70 −0.46
    VERA_1D 6.40 6.02 −0.38 6.40 6.02 −0.38 6.16 5.70 −0.46
    下载: 导出CSV
  • [1] Chadwick M B, Obložinský P, Herman M, et al. ENDF/B-VII. 0: next generation evaluated nuclear data library for nuclear science and technology[J]. Nuclear Data Sheets, 2006, 107(12): 2931-3060. doi: 10.1016/j.nds.2006.11.001
    [2] Aldama D L, Leszczynski F, Trkov A. WIMS-D library update[R]. STI/PUB-1264, Vienna: IAEA, 2007.
    [3] 刘燕平, 李世清. 裂变产物中子数据库重要核素的分析[J]. 武汉大学学报(自然科学版), 1990(2):56-58

    Liu Yanping, Li Shiqing. The analyses of important nuclides for fission products neutron nuclear data library (FPNNDL)[J]. Journal of Wuhan University (Natural Science Edition), 1990(2): 56-58
    [4] Katano R, Yamamoto A, Endo T, et al. Generation of simplified burnup chain using contribution matrix of nuclide production[C]//Proceedings of the PHYSOR2014—The Role of Reactor Physics towards a Sustainable Future. 2014.
    [5] Kajihara T, Tsuji M, Chiba G, et al. Automatic construction of a simplified burn-up chain model by the singular value decomposition[J]. Annals of Nuclear Energy, 2016, 94: 742-749. doi: 10.1016/j.anucene.2016.04.034
    [6] Chiba G, Tsuji M, Narabayashi T, et al. Important fission product nuclides identification method for simplified burnup chain construction[J]. Journal of Nuclear Science and Technology, 2015, 52(7/8): 953-960.
    [7] 胡钰莹, 廖鸿宽, 姚栋, 等. 双约束核素筛选与燃耗链压缩算法研究[J]. 核动力工程, 2022, 43(4):218-222

    Hu Yuying, Liao Hongkuan, Yao Dong, et al. Research on dual-restricted nuclide selection and burnup chain compression algorithm[J]. Nuclear Power Engineering, 2022, 43(4): 218-222
    [8] 黄凯, 吴宏春, 李云召, 等. 基于定量重要性分析的燃耗链压缩方法[J]. 强激光与粒子束, 2017, 29:036002 doi: 10.11884/HPLPB201729.160302

    Huang Kai, Wu Hongchun, Li Yunzhao, et al. Depletion chain compression method via quantitative significance analysis[J]. High Power Laser and Particle Beams, 2017, 29: 036002 doi: 10.11884/HPLPB201729.160302
    [9] 谢仲生. 核反应堆物理分析[M]. 西安: 西安交通大学出版社, 2004: 165-172

    Xie Zhongsheng. Nuclear reactor physics analysis[M]. Xi'an: Xi'an Jiaotong University Press, 2004: 165-172
    [10] Zhang Tengfei, Xiao Wei, Yin Han, et al. VITAS: a multi-purpose simulation code for the solution of neutron transport problems based on variational nodal methods[J]. Annals of Nuclear Energy, 2022, 178: 109335. doi: 10.1016/j.anucene.2022.109335
    [11] Pusa M, Leppänen J. Computing the matrix exponential in burnup calculations[J]. Nuclear Science and Engineering, 2010, 164(2): 140-150. doi: 10.13182/NSE09-14
    [12] Al-Baali M, Fletcher R. Variational methods for non-linear least-squares[J]. Journal of the Operational Research Society, 1985, 36(5): 405-421. doi: 10.1057/jors.1985.68
    [13] Madsen K, Nielsen H B, Tingleff O. Methods for non-linear least squares problems[M]. 2nd ed. Copenhagen: Technical University of Denmark, 2004: 24-28.
    [14] Gavin H P. The Levenberg-Marquardt algorithm for nonlinear least squares curve-fitting problems[D]. Durham: Duke University, 2019.
    [15] Godfrey A T. VERA core physics benchmark progression problem specifications[R]. CASL-U-2012-0131-004, 2014.
    [16] Gauld I C, Ryman J C. Nuclide importance to criticality safety, decay heating, and source terms related to transport and interim storage of high-burnup LWR fuel[R]. NUREG/CR-6700, Oak Ridge: Oak Ridge National Laboratory, 2000.
    [17] Romano P K, Forget B. The OpenMC Monte Carlo particle transport code[J]. Annals of Nuclear Energy, 2013, 51: 274-281. doi: 10.1016/j.anucene.2012.06.040
  • 加载中
图(5) / 表(7)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  32
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-05
  • 修回日期:  2024-12-02
  • 录用日期:  2024-12-20
  • 网络出版日期:  2025-01-17
  • 刊出日期:  2025-02-15

目录

    /

    返回文章
    返回