留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于QMSIW的小型化高隔离双频天线设计

李晓龙 刘佳鑫 郭庆功

李晓龙, 刘佳鑫, 郭庆功. 一种基于QMSIW的小型化高隔离双频天线设计[J]. 强激光与粒子束, 2025, 37: 043007. doi: 10.11884/HPLPB202537.240309
引用本文: 李晓龙, 刘佳鑫, 郭庆功. 一种基于QMSIW的小型化高隔离双频天线设计[J]. 强激光与粒子束, 2025, 37: 043007. doi: 10.11884/HPLPB202537.240309
Li Xiaolong, Liu Jiaxin, Guo Qinggong. Design of a miniaturized high-isolation dual-frequency antenna based on quarter-mode substrate integrated waveguide[J]. High Power Laser and Particle Beams, 2025, 37: 043007. doi: 10.11884/HPLPB202537.240309
Citation: Li Xiaolong, Liu Jiaxin, Guo Qinggong. Design of a miniaturized high-isolation dual-frequency antenna based on quarter-mode substrate integrated waveguide[J]. High Power Laser and Particle Beams, 2025, 37: 043007. doi: 10.11884/HPLPB202537.240309

一种基于QMSIW的小型化高隔离双频天线设计

doi: 10.11884/HPLPB202537.240309
基金项目: 国家自然科学基金项目(62071316)
详细信息
    作者简介:

    李晓龙,17313099443@163.com

  • 中图分类号: TN828

Design of a miniaturized high-isolation dual-frequency antenna based on quarter-mode substrate integrated waveguide

  • 摘要: 设计实现了一种基于四分之一模基片集成波导(Quarter-Mode Substrate Integrated Waveguide, QMSIW)应用于5.2 GHz/5.8 GHz的双频天线。采用QMSIW结构,在保持了基片集成波导(SIW)的低损耗、低剖面等特性的情况下,减小了天线的体积。通过在QMSIW腔体上添加两排金属化通孔并刻蚀两条矩形槽以及不对称Y形槽,减小其尺寸并实现较高的隔离度。经过测试,天线在5.2 GHz和5.8 GHz的增益分别为6.0和6.1 dBi,交叉极化比分别大于20 dB和25 dB。所设计的天线实现了良好的小型化和大于34 dB的高隔离度,尺寸为0.42λ0×0.42λ0×0.01λ0。实物测试结果与仿真结果吻合良好。
  • 图  1  TE110模式下的电场分布

    Figure  1.  E-field distribution at TE110

    图  2  天线模型

    Figure  2.  Schematic diagram of the antenna

    图  3  天线设计过程

    Figure  3.  Design process of the antenna

    图  4  电场分布

    Figure  4.  E-field distribution

    图  5  单一变量对S参数和隔离度的影响

    Figure  5.  Effect of a single variable on S-parameters and isolation

    图  6  天线加工样品图片

    Figure  6.  Image of antenna processing sample

    图  7  天线测试场景图片

    Figure  7.  Image of antenna test scenario

    图  8  S参数的仿真与测试图

    Figure  8.  Simulated and measured S-parameters

    图  9  天线在5.2 GHz处的辐射方向图

    Figure  9.  Radiation pattern at 5.2 GHz

    图  10  天线在5.8 GHz处的辐射方向图

    Figure  10.  Radiation pattern at 5.8 GHz

    表  1  天线尺寸参数

    Table  1.   Parameters of the antenna (mm)

    L L1 L2 L3 L4 L5 L6 W
    24 10.6 18.5 22.5 10 0.9 0.7 24
    W1 W2 W3 W4 G1 G2 K1 K2
    2 1.3 0.5 4 0.5 0.5 2.6 2
    d p h
    1 1.5 0.787
    下载: 导出CSV

    表  2  与其他双频天线的比较

    Table  2.   Comparison with other dual band antennas

    antennas frequency/GHz isolation/dB gain/dBi front-to-back ratio FTBR/dB size
    Ref [5] 5.2/5.8 >28 6.97/6.2 0.83λ×0.90λ0×0.03λ0
    Ref [6] 8.7/10.5 >20 5.11/7 >11.2 0.81λ0×0.81λ0×0.05λ0
    Ref [10] 11.23/11.72 >14 5.6/5.9 >14 0.54λ0×0.48λ0×0.03λ0
    Ref [13] 3.56/4.4 >24 5.3/4.45 0.43λ0×0.43λ0×0.02λ0
    this work 5.2/5.8 >34 6.0/6.1 >15.6 0.42λ0×0.42λ0×0.01λ0
    下载: 导出CSV
  • [1] Chaturvedi D, Kumar A. A QMSIW cavity-backed self-diplexing antenna with tunable resonant frequency using CSRR slot[J]. IEEE Antennas and Wireless Propagation Letters, 2024, 23(1): 259-263. doi: 10.1109/LAWP.2023.3323008
    [2] Gayen R K, Midya P, Ghosh S, et al. Design of a ‘U’ slot substrate-integrated waveguide cavity-backed self-diplexing antenna[C]//Proceedings of 2020 IEEE International IOT, Electronics and Mechatronics Conference. 2020: 1-4.
    [3] Khan A A, Mandal M K. Compact self-diplexing antenna using dual-mode SIW square cavity[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(2): 343-347. doi: 10.1109/LAWP.2018.2890790
    [4] Kumar A, Chaturvedi D, Raghavan S. Design and experimental verification of dual-fed, self-diplexed cavity-backed slot antenna using HMSIW technique[J]. IET Microwaves, Antennas & Propagation, 2019, 13(3): 380-385.
    [5] Chaturvedi D, Kumar A, Raghavan S. A nested SIW cavity-backing antenna for Wi-Fi/ISM band applications[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(4): 2775-2780. doi: 10.1109/TAP.2019.2896670
    [6] Agrawal M, Kumar T. Wideband SIW based self-diplexing antenna using parasitic slots[C]//Proceedings of 2021 Second International Conference on Electronics and Sustainable Communication Systems. 2021: 649-652.
    [7] Kumar A, Singh A K, Kumar M. A 25/28 GHz modified π-shaped SIW-based self-diplexing antenna with low frequency ratio for 5G applications[C]//Proceedings of 2021 IEEE Indian Conference on Antennas and Propagation. 2021: 1039-1042.
    [8] Dash S K K, Cheng Q S, Barik R K, et al. A compact substrate integrated self-diplexing antenna for WiFi and ISM band applications[C]//Proceedings of 2020 50th European Microwave Conference. 2021: 232-235.
    [9] Kumar A, Raghavan S. Planar cavity-backed self-diplexing antenna using two-layered structure[J]. Progress in Electromagnetics Research Letters, 2018, 76: 91-96.
    [10] Priya S, Kumar K, Dwari S, et al. Circularly polarized self-diplexing SIW cavity backed slot antennas[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3): 2387-2392. doi: 10.1109/TAP.2019.2938576
    [11] Sun Y X, Wu D, Fang X S, et al. Compact quarter-mode substrate-integrated waveguide dual-frequency millimeter-wave antenna array for 5G applications[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(8): 1405-1409. doi: 10.1109/LAWP.2020.3003305
    [12] Lai M, Kong Y D. A simple dual-band antenna using half mode substrate integrated waveguide technique with low cross polarization[C]//Proceedings of 2020 IEEE MTT-S International Wireless Symposium. 2020: 1-3.
    [13] Reddy M G, Pradhan N C, Karthikeyan S S. Fluidically reconfigurable SIW based self-diplexing antenna for sub-6 GHz band applications[C]//Proceedings of 2022 IEEE International Conference on Signal Processing and Communications. 2022: 1-5.
    [14] Naseri H, PourMohammadi P, Melouki N, et al. Substrate integrated waveguide-based dual-polarized self-diplexing antenna array[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70(8): 2839-2843.
    [15] Zheng Yan, Zhu Yilong, Wang Zhan, et al. Compact, wide stopband, shielded hybrid filter based on quarter-mode substrate integrated waveguide and microstrip line resonators[J]. IEEE Microwave and Wireless Components Letters, 2021, 31(3): 245-248. doi: 10.1109/LMWC.2020.3049048
    [16] Wang Xiang, Zhu Xiaowei, Tian Ling, et al. Design and experiment of filtering power divider based on shielded HMSIW/QMSIW technology for 5G wireless applications[J]. IEEE Access, 2019, 7: 72411-72419. doi: 10.1109/ACCESS.2019.2920150
    [17] Kumar A, Chaturvedi D, Raghavan S. Dual-band, dual-fed self-diplexing antenna[C]//Proceedings of 2019 13th European Conference on Antennas and Propagation. 2019: 1-5.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  44
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-05
  • 修回日期:  2024-12-05
  • 录用日期:  2024-12-31
  • 网络出版日期:  2025-03-08
  • 刊出日期:  2025-04-15

目录

    /

    返回文章
    返回