Performance study of resonant ring and rectangular flexible waveguide
-
摘要: 为了解决波导传输线中硬连接问题,部分波导组件将使用软波导,但软波导的使用会带来传输线损耗的增大。为了探究其在真实工作条件下的损耗和电热情况,搭建了基于谐振环的测试平台,谐振环行波功率增益为13.4 dB,通过两个2 kW功率放大器,成功在波腹位置实现了140 kW的等效功率。根据仿真和实验结果,对矩形软波导进行了优化设计,改进其结构和材料,以更好地应对高功率输入下的热形变和应力问题。优化后的软波导电热性能表现优于国外同类型产品。Abstract: To solve the problem of hard connection in waveguide transmission line, some waveguide components will use flexible waveguide, but the use of flexible waveguide will bring about the increase of transmission line loss. Aiming to investigate its loss and electrical heating under real operating conditions, we built a test platform based on a resonant ring with a 13.4 dB power gain in the traveling wave of the resonant ring, which successfully achieves an equivalent power of 140 kW at the position of the antinode by means of two 2 kW power amplifiers. Based on the results of simulations and experiments, we optimized the design of the rectangular flexible waveguide and improved its structure and materials to better cope with the thermal deformation and stress under high power input. The optimized flexible waveguide's electrical and thermal performance is better than that of similar foreign products.
-
Key words:
- flexible waveguide /
- high power /
- transmission line /
- resonant ring /
- accelerator
-
表 1 待测软波导
Table 1. Flexible waveguide under test
material manufacturing location max. temperature rise (46 kW)/℃ max. temperature rise (138 kW)/℃ copper domestic 9.7 18.5 copper domestic 8.2 17.5 aluminum domestic 6.5 16.8 aluminum foreign 4.8 11.3 表 2 待测器件
Table 2. Flexible waveguide under test
material manufacturing location max. temperature rise (50 kW)/℃ max. temperature rise (140 kW)/℃ copper domestic 10.7 20.2 aluminum domestic 4.3 9.4 aluminum foreign 5.3 10.7 -
[1] 徐瑚珊, 詹文龙, 肖国青, 等. 国家重大科技基础设施HIAF及CiADS建设进展与展望[J]. 原子核物理评论, 2024, 41(1):60-66Xu Hushan, Zhan Wenlong, Xiao Guoqing, et al. HIAF and CiADS national major science and technology infrastructure: progress and prospect[J]. Nuclear Physics Review, 2024, 41(1): 60-66 [2] 刘淑会. CiADS超导直线加速器优化设计[D]. 兰州: 中国科学院大学(中国科学院近代物理研究所), 2021: 23-26Liu Shuhui. Optimization design of CiADS superconducting linac[D]. Lanzhou: University of Chinese Academy of Sciences (Institute of Modern Physics, Chinese Academy of Sciences), 2021: 23-26 [3] Sun Liepeng, Shi Aimin, Zhang Zhouli, et al. Overview of RF system for C-ADS injector Ⅱ radio frequency quadrupole[J]. High Power Laser and Particle Beams, 2017, 29: 065107. [4] Aden P, Edgecock T R, Naeem D, et al. The RF distribution system for the ESS[J]. Journal of Physics: Conference, 2017, 874: 012095. [5] He Xiang, Cao Jianshe, Deng Binglin, et al. Radio-frequency design and commissioning of a flexible waveguide for high-vacuum S-band applications[J]. Radiation Detection Technology and Methods, 2020, 4(2): 250-254. doi: 10.1007/s41605-020-00177-x [6] Du B T, Matsumoto T, Michizono S, et al. High-power operation of an L-band resonant ring[C]//Proceedings of the 16th Annual Meeting of Particle Accelerator Society of Japan. 2019: 884-886. [7] Bogdashov A, Denisov G, Lukovnikov D et al. Ka-band resonant ring for testing components for a high-gradient linear accelerator[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(10): 3152-3155. doi: 10.1109/TMTT.2005.855357 [8] Jin Kai, Holtkamp N. Travelling wave resonant-ring for SBLC test facility[J]. Journal of China University of Science and Technology, 2000, 30(2): 169-173. [9] 黄贵荣, 董赛, 贾大春. 行波谐振环和陶瓷窗高功率老炼[J]. 强激光与粒子束, 2005, 17(4):623-625Huang Guirong, Dong Sai, Jia Dachun. Travelling wave resonant-ring for RF window high power test[J]. High Power Laser and Particle Beams, 2005, 17(4): 623-625 [10] Tischer F J. Resonance properties of ring circuits[J]. IRE Transactions on Microwave Theory and Techniques, 1957, 5(1): 51-56. doi: 10.1109/TMTT.1957.1125090 [11] He Yuan, Jin Kean, Jiang Guodong, et al. Research on the newest GaN-based solid-state power amplifier for CiADS project[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023, 1055: 168403. doi: 10.1016/j.nima.2023.168403 [12] 薛人炜, 薛耀明, 郁伯英. 大功率矩形软波导的研制[J]. 光纤与电缆及其应用技术, 2005(5):18-20 doi: 10.3969/j.issn.1006-1908.2005.05.005Xue Renwei, Xue Yaoming, Yu Boying. High power flexible rectangular waveguide[J]. Optical Fiber & Electric Cable and Their Applications, 2005(5): 18-20 doi: 10.3969/j.issn.1006-1908.2005.05.005 [13] Nanni E A, Jawla S K, Shapiro M A, et al. Low-loss transmission lines for high-power terahertz radiation[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2012, 33(7): 695-714. doi: 10.1007/s10762-012-9870-5 [14] 张敏. CST微波工作室用户全书[M]. 成都: 电子科技大学出版社, 2004: 1-9Zhang Min. CST microwave studio handbook[M]. Chengdu: University of Electronic Science and Technology of China Press, 2004: 1-9 [15] He Xiang, Meng Cai, Pei Shilun, et al. Development of flexible waveguide for high power high vacuum applications in s-band[C]//Proceedings of the 10th International Particle Accelerator Conference. 2019. -