留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

谐振环和矩形软波导性能研究

吴峥嵘 施龙波 江国栋 金珂安 孙列鹏 潘超 黄贵荣

吴峥嵘, 施龙波, 江国栋, 等. 谐振环和矩形软波导性能研究[J]. 强激光与粒子束, 2025, 37: 023004. doi: 10.11884/HPLPB202537.240310
引用本文: 吴峥嵘, 施龙波, 江国栋, 等. 谐振环和矩形软波导性能研究[J]. 强激光与粒子束, 2025, 37: 023004. doi: 10.11884/HPLPB202537.240310
Wu Zhengrong, Shi Longbo, Jiang Guodong, et al. Performance study of resonant ring and rectangular flexible waveguide[J]. High Power Laser and Particle Beams, 2025, 37: 023004. doi: 10.11884/HPLPB202537.240310
Citation: Wu Zhengrong, Shi Longbo, Jiang Guodong, et al. Performance study of resonant ring and rectangular flexible waveguide[J]. High Power Laser and Particle Beams, 2025, 37: 023004. doi: 10.11884/HPLPB202537.240310

谐振环和矩形软波导性能研究

doi: 10.11884/HPLPB202537.240310
基金项目: 国家重大科技基础设施-加速器驱动嬗变研究装置项目(2017-000052-75-01-000590);甘肃省自然科学基金项目(23JRRA588)
详细信息
    作者简介:

    吴峥嵘,wuzhengrong@impcas.ac.cn

    通讯作者:

    孙列鹏,sunlp@impcas.ac.cn

  • 中图分类号: TN99

Performance study of resonant ring and rectangular flexible waveguide

  • 摘要: 为了解决波导传输线中硬连接问题,部分波导组件将使用软波导,但软波导的使用会带来传输线损耗的增大。为了探究其在真实工作条件下的损耗和电热情况,搭建了基于谐振环的测试平台,谐振环行波功率增益为13.4 dB,通过两个2 kW功率放大器,成功在波腹位置实现了140 kW的等效功率。根据仿真和实验结果,对矩形软波导进行了优化设计,改进其结构和材料,以更好地应对高功率输入下的热形变和应力问题。优化后的软波导电热性能表现优于国外同类型产品。
  • 图  1  基于谐振环的双端口测试平台结构示意图

    Figure  1.  Schematic structure of the resonant ring-based dual-port test platform

    图  2  650 MHz谐振环的主要部件结构图

    Figure  2.  Diagram of the main components of the 650 MHz resonant ring

    图  3  基于谐振环的双端口测试平台实物图

    Figure  3.  Physical diagram of the resonant ring-based dual-port test platform

    图  4  谐振环增益测试

    Figure  4.  Test plot of the resonant ring gain

    图  5  驻波测试中4组产品的热分析图

    Figure  5.  Thermograms of 4 products in standing wave testing

    图  6  矩形软波导结构尺寸示意图

    Figure  6.  Schematic dimensions of rectangular flexible waveguide structure

    图  7  矩形软波导工作频带内传输系数仿真曲线

    Figure  7.  Simulation curves of transmission coefficients in the operating band of rectangular flexible waveguide

    图  8  结构优化后的软波导实物图

    Figure  8.  Image of the optimized flexible waveguide

    图  9  140 kW驻波测试时两款软波导热分布对比

    Figure  9.  Comparison of heat distribution of two flexible waveguides at 140 kW standing wave test

    表  1  待测软波导

    Table  1.   Flexible waveguide under test

    material manufacturing location max. temperature rise (46 kW)/℃ max. temperature rise (138 kW)/℃
    copper domestic 9.7 18.5
    copper domestic 8.2 17.5
    aluminum domestic 6.5 16.8
    aluminum foreign 4.8 11.3
    下载: 导出CSV

    表  2  待测器件

    Table  2.   Flexible waveguide under test

    material manufacturing location max. temperature rise (50 kW)/℃ max. temperature rise (140 kW)/℃
    copper domestic 10.7 20.2
    aluminum domestic 4.3 9.4
    aluminum foreign 5.3 10.7
    下载: 导出CSV
  • [1] 徐瑚珊, 詹文龙, 肖国青, 等. 国家重大科技基础设施HIAF及CiADS建设进展与展望[J]. 原子核物理评论, 2024, 41(1):60-66

    Xu Hushan, Zhan Wenlong, Xiao Guoqing, et al. HIAF and CiADS national major science and technology infrastructure: progress and prospect[J]. Nuclear Physics Review, 2024, 41(1): 60-66
    [2] 刘淑会. CiADS超导直线加速器优化设计[D]. 兰州: 中国科学院大学(中国科学院近代物理研究所), 2021: 23-26

    Liu Shuhui. Optimization design of CiADS superconducting linac[D]. Lanzhou: University of Chinese Academy of Sciences (Institute of Modern Physics, Chinese Academy of Sciences), 2021: 23-26
    [3] Sun Liepeng, Shi Aimin, Zhang Zhouli, et al. Overview of RF system for C-ADS injector Ⅱ radio frequency quadrupole[J]. High Power Laser and Particle Beams, 2017, 29: 065107.
    [4] Aden P, Edgecock T R, Naeem D, et al. The RF distribution system for the ESS[J]. Journal of Physics: Conference, 2017, 874: 012095.
    [5] He Xiang, Cao Jianshe, Deng Binglin, et al. Radio-frequency design and commissioning of a flexible waveguide for high-vacuum S-band applications[J]. Radiation Detection Technology and Methods, 2020, 4(2): 250-254. doi: 10.1007/s41605-020-00177-x
    [6] Du B T, Matsumoto T, Michizono S, et al. High-power operation of an L-band resonant ring[C]//Proceedings of the 16th Annual Meeting of Particle Accelerator Society of Japan. 2019: 884-886.
    [7] Bogdashov A, Denisov G, Lukovnikov D et al. Ka-band resonant ring for testing components for a high-gradient linear accelerator[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(10): 3152-3155. doi: 10.1109/TMTT.2005.855357
    [8] Jin Kai, Holtkamp N. Travelling wave resonant-ring for SBLC test facility[J]. Journal of China University of Science and Technology, 2000, 30(2): 169-173.
    [9] 黄贵荣, 董赛, 贾大春. 行波谐振环和陶瓷窗高功率老炼[J]. 强激光与粒子束, 2005, 17(4):623-625

    Huang Guirong, Dong Sai, Jia Dachun. Travelling wave resonant-ring for RF window high power test[J]. High Power Laser and Particle Beams, 2005, 17(4): 623-625
    [10] Tischer F J. Resonance properties of ring circuits[J]. IRE Transactions on Microwave Theory and Techniques, 1957, 5(1): 51-56. doi: 10.1109/TMTT.1957.1125090
    [11] He Yuan, Jin Kean, Jiang Guodong, et al. Research on the newest GaN-based solid-state power amplifier for CiADS project[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023, 1055: 168403. doi: 10.1016/j.nima.2023.168403
    [12] 薛人炜, 薛耀明, 郁伯英. 大功率矩形软波导的研制[J]. 光纤与电缆及其应用技术, 2005(5):18-20 doi: 10.3969/j.issn.1006-1908.2005.05.005

    Xue Renwei, Xue Yaoming, Yu Boying. High power flexible rectangular waveguide[J]. Optical Fiber & Electric Cable and Their Applications, 2005(5): 18-20 doi: 10.3969/j.issn.1006-1908.2005.05.005
    [13] Nanni E A, Jawla S K, Shapiro M A, et al. Low-loss transmission lines for high-power terahertz radiation[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2012, 33(7): 695-714. doi: 10.1007/s10762-012-9870-5
    [14] 张敏. CST微波工作室用户全书[M]. 成都: 电子科技大学出版社, 2004: 1-9

    Zhang Min. CST microwave studio handbook[M]. Chengdu: University of Electronic Science and Technology of China Press, 2004: 1-9
    [15] He Xiang, Meng Cai, Pei Shilun, et al. Development of flexible waveguide for high power high vacuum applications in s-band[C]//Proceedings of the 10th International Particle Accelerator Conference. 2019.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  42
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-05
  • 修回日期:  2024-10-21
  • 录用日期:  2024-11-06
  • 网络出版日期:  2024-12-19
  • 刊出日期:  2025-02-15

目录

    /

    返回文章
    返回