留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高能量密度物质的X射线Talbot-Lau干涉诊断技术综述

陈泽畑 仵武汉 李昆

陈泽畑, 仵武汉, 李昆. 高能量密度物质的X射线Talbot-Lau干涉诊断技术综述[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240312
引用本文: 陈泽畑, 仵武汉, 李昆. 高能量密度物质的X射线Talbot-Lau干涉诊断技术综述[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240312
Chen Zetian, Wu Wuhan, Li Kun. Review of x-ray Talbot-Lau interferometric diagnostics for high energy density matter[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240312
Citation: Chen Zetian, Wu Wuhan, Li Kun. Review of x-ray Talbot-Lau interferometric diagnostics for high energy density matter[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240312

高能量密度物质的X射线Talbot-Lau干涉诊断技术综述

doi: 10.11884/HPLPB202537.240312
基金项目: 国家自然科学基金项目(U2330123);
详细信息
    作者简介:

    陈泽畑,22ztchen@stu.edu.cn

    通讯作者:

    李 昆,kunli@stu.edu.cn

  • 中图分类号: TN124

Review of x-ray Talbot-Lau interferometric diagnostics for high energy density matter

  • 摘要: 随着高能量密度(HED)物质诊断需求的日益增长,X射线干涉成像技术在该领域得到了广泛关注和应用。主要综述了X射线干涉成像技术与系统的国内外最新进展,介绍了基于Talbot和Talbot-Lau干涉的X射线光栅成像原理和能力,Talbot干涉和Talbot-Lau干涉是通过利用具有周期性结构的光栅,对X射线的相位、吸收和散射特性进行高精度测量,从而实现对样品内部结构的无损检测与成像。总结了该技术在高能量密度物质诊断实验中的应用,介绍了Talbot干涉分析(TIA)代码,并依靠了TIA程序与Flash流体力学代码结合进行了初步模拟,成功获取了Flash模型中的吸收、相位和暗场三种信息,最后总结和展望了X射线Talbot-Lau干涉诊断技术在高能量密度等离子体实验中的应用。
  • 图  1  在入射平面相干光照明下,周期为p的不同类型分束光栅G1后的强度分布图(黑白虚线表示最大对比度的点[19])

    Figure  1.  Shows the intensity distribution after different types of gratings G1 under coherent light illumination in the incident plane, with a period (black and white dashed lines represent points of maximum contrast.[19])

    图  2  基于光栅的硬X射线干涉仪[9]

    Figure  2.  Grating-based hard X-ray interferometer[9]

    图  3  使用点光源X射线的Talbot-Lau干涉仪示意图[31]

    Figure  3.  Schematic diagram of a Talbot-Lau interferometer using a point source X-ray[31]

    图  4  Talbot-Lau干涉仪的差分相位对比成像装置示意图[15]

    Figure  4.  Layout of differential phase contrast imaging setup with Talbot-Lau interferometer[15]

    图  5  能量低于10 keV的X射线,通过Talbot-Lau干涉技术对直径1.5 mm的PMMA球进行成像的结果[33]

    Figure  5.  Imaging results of a 1.5 mm diameter PMMA sphere using Talbot-Lau interferometry with X-rays of energy below 10 keV[33]

    图  6  Talbot-Lau X射线偏转仪在MTW目标室内的物理布局[35]

    Figure  6.  The physical layout of the Talbot-Lau X-ray deflectometer in the MTW target chamber[35]

    图  7  超短脉冲时间分辨 X 射线 Talbot-Lau 干涉实验前端光路示意图[38]

    Figure  7.  Schematic diagram of the optical path at the front end of the ultrashort pulse time-resolved X-ray Talbot-Lau interferometry experiment[38]

    图  8  Talbot-Lau X射线干涉法诊断平台,用于OMEGA EP激光设施[38]

    Figure  8.  The Talbot-Lau X-ray interferometry diagnostic platform is designed for the OMEGA EP laser facility[38]

    图  9  首次在OMEGA EP激光器上使用Talbot-Lau X射线干涉技术获得的实验结果[39]

    Figure  9.  Experimental results obtained using Talbot-Lau X-ray interferometry on the OMEGA EP laser for the first time[39]

    图  10  高重复率激光设施中进行Talbot-Lau X射线干涉成像的实验装置示意图[40]

    Figure  10.  Schematic diagram of the experimental setup for Talbot-Lau X-ray interferometry in a high-repetition-rate laser facility[40]

    图  11  等离子体靶结构设计及密度演化[16]

    Figure  11.  Plasma target structure design and its density evolution[16]

    图  12  经过分析工具TIA生成的干涉图和参考图[16]

    Figure  12.  Interferogram and reference image generated by the post-processing tool TIA in an example case. [16]

    图  13  使用TIA处理后得到的结果[16]

    Figure  13.  Results obtained after processing with TIA[16]

    图  14  使用TIA工具对Flash模型进行成像分析

    Figure  14.  Perform imaging analysis on the Flash model using the TIA tool

  • [1] Momose A, Fukuda J. Phase-contrast radiographs of nonstained rat cerebellar specimen[J]. Medical Physics, 1995, 22(4): 375-379. doi: 10.1118/1.597472
    [2] McMorrow D, Als-Nielsen J. Elements of modern X-ray physics[M]. 2nd ed. Hoboken: John Wiley & Sons, 2011.
    [3] 杜杨, 刘鑫, 雷耀虎, 等. X射线光栅微分相衬成像视场分析[J]. 物理学报, 2016, 65:058701 doi: 10.7498/aps.65.058701

    Du Yang, Liu Xin, Lei Yaohu, et al. Quantitative analysis of the field of view for X-ray differential phase contrast imaging[J]. Acta Physica Sinica, 2016, 65: 058701 doi: 10.7498/aps.65.058701
    [4] Momose A. Recent advances in X-ray phase imaging[J]. Japanese Journal of Applied Physics, 2005, 44(9A): 6355-6367.
    [5] 李镜, 刘文杰, 朱佩平, 等. 基于光栅相衬成像的扇束螺旋CT重建算法[J]. 光学学报, 2010, 30(2):421-427 doi: 10.3788/AOS20103002.0421

    Li Jing, Liu Wenjie, Zhu Peiping, et al. Reconstruction algorithm of fan-beam helical X-ray computer tomography based on grating imaging[J]. Acta Optica Sinica, 2010, 30(2): 421-427 doi: 10.3788/AOS20103002.0421
    [6] 王振天. 常规X光源光栅成像相关方法和技术研究[D]. 北京: 清华大学, 2010

    Wang Zhentian. Research on methods and technologies for grating-based imaging with conventional X-ray sources[D]. Beijing: Tsinghua University, 2010
    [7] Momose A, Kawamoto S, Koyama I, et al. Demonstration of X-ray Talbot interferometry[J]. Japanese Journal of Applied Physics, 2003, 42: L866. doi: 10.1143/JJAP.42.L866
    [8] Takeda Y, Yashiro W, Suzuki Y, et al. X-ray phase imaging with single phase grating[J]. Japanese Journal of Applied Physics, 2007, 46: L89. doi: 10.1143/JJAP.46.L89
    [9] Weitkamp T, Diaz A, David C, et al. X-ray phase imaging with a grating interferometer[J]. Optics Express, 2005, 13(16): 6296-6304. doi: 10.1364/OPEX.13.006296
    [10] Weitkamp T, Nöhammer B, Diaz A, et al. X-ray wavefront analysis and optics characterization with a grating interferometer[J]. Applied Physics Letters, 2005, 86: 054101. doi: 10.1063/1.1857066
    [11] Pfeiffer F, Weitkamp T, Bunk O, et al. Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources[J]. Nature Physics, 2006, 2(4): 258-261. doi: 10.1038/nphys265
    [12] Pfeiffer F, Bech M, Bunk O, et al. Hard-X-ray dark-field imaging using a grating interferometer[J]. Nature Materials, 2008, 7(2): 134-137. doi: 10.1038/nmat2096
    [13] 韩跃平, 陈志强, 张丽, 等. 基于Talbot干涉的X射线光栅成像技术研究进展[J]. 激光与光电子学进展, 2012, 49:070002

    Han Yueping, Chen Zhiqiang, Zhang Li, et al. Developments of X-ray grating imaging based on Talbot interferometry[J]. Laser & Optoelectronics Progress, 2012, 49: 070002
    [14] Momose A, Yashiro W, Takeda Y, et al. Phase tomography by X-ray Talbot interferometry for biological imaging[J]. Japanese Journal of Applied Physics, 2006, 45(6R): 5254-5262. doi: 10.1143/JJAP.45.5254
    [15] Stutman D, Finkenthal M. Talbot-Lau x-ray interferometry for high energy density plasma diagnostic[J]. Review of Scientific Instruments, 2011, 82: 113508. doi: 10.1063/1.3660808
    [16] Pérez-Callejo G, Bouffetier V, Ceurvorst L, et al. TIA: a forward model and analyzer for Talbot interferometry experiments of dense plasmas[J]. Physics of Plasmas, 2022, 29: 043901. doi: 10.1063/5.0085822
    [17] Hutchinson I H. Principles of plasma diagnostics: second edition[J]. Plasma Physics and Controlled Fusion, 2002, 44(12): 2603. doi: 10.1088/0741-3335/44/12/701
    [18] Talbot H F. LXXVI. Facts relating to optical science. No. IV[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1836, 9(56): 401-407. doi: 10.1080/14786443608649032
    [19] Weitkamp T, David C, Kottler C, et al. Tomography with grating interferometers at low-brilliance sources[C]//Proceedings of SPIE 6318, Developments in X-ray Tomography V. 2006.
    [20] Weitkamp T, Diaz A, Nohammer B, et al. Moiré interferometry formulas for hard x-ray wavefront sensing[C]//Proceedings of SPIE 5533, Advances in Mirror Technology for X-Ray, EUV Lithography, Laser, and Other Applications II. 2004.
    [21] Weitkamp T, Diaz A, Nohammer B, et al. Hard x-ray phase imaging and tomography with a grating interferometer[C]//Proceedings of SPIE 5535, Developments in X-ray Tomography IV. 2004.
    [22] Lider V V. Talbot and Talbot–Lau X-ray interferometers[J]. Uspekhi Fizicheskikh Nauk, 2023, 66(10): 987-1007. doi: 10.3367/UFNe.2022.12.039283
    [23] Myers G R, Mayo S C, Gureyev T E, et al. Polychromatic cone-beam phase-contrast tomography[J]. Physical Review A, 2007, 76: 045804. doi: 10.1103/PhysRevA.76.045804
    [24] Thüring T, Modregger P, Pinzer B R, et al. Towards x-ray differential phase contrast imaging on a compact setup[C]//Proceedings of SPIE 7961, Medical Imaging 2011: Physics of Medical Imaging. 2011.
    [25] Olbinado M P, Harasse S, Yashiro W, et al. X-ray Talbot-Lau interferometer for high-speed phase imaging and tomography using white synchrotron radiation[J]. AIP Conference Proceedings, 2012, 1466(1): 266-271.
    [26] Mousavi Ajarostaghi S S, Zaboli M, Javadi H, et al. A review of recent passive heat transfer enhancement methods[J]. Energies, 2022, 15: 986. doi: 10.3390/en15030986
    [27] Thuering T, Stampanoni M. Performance and optimization of X-ray grating interferometry[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 372: 20130027. doi: 10.1098/rsta.2013.0027
    [28] Birnbacher L, Willner M, Velroyen A, et al. Experimental realisation of high-sensitivity laboratory X-ray grating-based phase-contrast computed tomography[J]. Scientific Reports, 2016, 6: 24022. doi: 10.1038/srep24022
    [29] Vila-Comamala J, Romano L, Jefimovs K, et al. High sensitivity X-ray phase contrast imaging by laboratory grating-based interferometry at high Talbot order geometry[J]. Optics Express, 2021, 29(2): 2049-2064. doi: 10.1364/OE.414174
    [30] Donath T, Chabior M, Pfeiffer F, et al. Inverse geometry for grating-based x-ray phase-contrast imaging[J]. Journal of Applied Physics, 2009, 106: 054703. doi: 10.1063/1.3208052
    [31] Luo Ronghui, Wu Zhao, Xiong Ying, et al. Optimization of grating duty cycle in non-interferometric grating-based X-ray phase contrast imaging[J]. Review of Scientific Instruments, 2017, 88: 085102. doi: 10.1063/1.4996507
    [32] Valdivia M P, Stutman D, Finkenthal M. Talbot-Lau based Moiré deflectometry with non-coherent sources as potential High Energy Density plasma diagnostic[J]. Journal of Applied Physics, 2013, 114: 163302. doi: 10.1063/1.4827186
    [33] Valdivia M P, Stutman D, Finkenthal M. Moiré deflectometry using the Talbot-Lau interferometer as refraction diagnostic for high energy density plasmas at energies below 10 keV[J]. Review of Scientific Instruments, 2014, 85: 073702. doi: 10.1063/1.4885467
    [34] Valdivia M P, Stutman D, Stoeckl C, et al. Talbot-Lau x-ray deflectometer electron density diagnostic for laser and pulsed power high energy density plasma experiments (invited)[J]. Review of Scientific Instruments, 2016, 87: 11D501. doi: 10.1063/1.4959158
    [35] Valdivia M P, Stutman D, Stoeckl C, et al. An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics[J]. Review of Scientific Instruments, 2016, 87: 023505. doi: 10.1063/1.4941441
    [36] Valdivia M P, Stutman D, Stoeckl C, et al. Talbot–Lau x-ray deflectometry phase-retrieval methods for electron density diagnostics in high-energy density experiments[J]. Applied Optics, 2018, 57(2): 138-145. doi: 10.1364/AO.57.000138
    [37] Schuster M, Ludwig V, Akstaller B, et al. A fast alignment method for grating-based X-ray phase-contrast imaging systems[J]. Journal of Instrumentation, 2019, 14: P08003. doi: 10.1088/1748-0221/14/08/P08003
    [38] Valdivia M P, Stutman D, Stoeckl C, et al. Implementation of a Talbot–Lau x-ray deflectometer diagnostic platform for the OMEGA EP laser[J]. Review of Scientific Instruments, 2020, 91: 023511. doi: 10.1063/1.5123919
    [39] Valdivia M P, Stutman D, Stoeckl C, et al. Talbot-Lau x-ray deflectometer: refraction-based HEDP imaging diagnostic[J]. Review of Scientific Instruments, 2021, 92: 065110. doi: 10.1063/5.0043655
    [40] Bouffetier V, Ceurvorst L, Valdivia M P, et al. Proof-of-concept Talbot–Lau x-ray interferometry with a high-intensity, high-repetition-rate, laser-driven K-alpha source[J]. Applied Optics, 2020, 59(27): 8380-8387. doi: 10.1364/AO.398839
    [41] Weitkamp T. XWFP: an x-ray wavefront propagation software package for the IDL computer language[C]//Proceedings of SPIE 5536, Advances in Computational Methods for X-Ray and Neutron Optics. 2004.
    [42] Tzeferacos P, Fatenejad M, Flocke N, et al. FLASH MHD simulations of experiments that study shock-generated magnetic fields[J]. High Energy Density Physics, 2015, 17: 24-31. doi: 10.1016/j.hedp.2014.11.003
    [43] Rigon G, Casner A, Albertazzi B, et al. Rayleigh-Taylor instability experiments on the LULI2000 laser in scaled conditions for young supernova remnants[J]. Physical Review E, 2019, 100: 021201. doi: 10.1103/PhysRevE.100.021201
    [44] Tzeferacos P, Rigby A, Bott A F A, et al. Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma[J]. Nature Communications, 2018, 9: 591. doi: 10.1038/s41467-018-02953-2
  • 加载中
图(14)
计量
  • 文章访问数:  78
  • HTML全文浏览量:  50
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-27
  • 修回日期:  2024-10-20
  • 录用日期:  2024-12-03
  • 网络出版日期:  2025-01-17

目录

    /

    返回文章
    返回