Research on waveform optimization for quasi-square wave pulse source based on PFN-Marx
-
摘要: 脉冲功率驱动源是高功率微波技术的关键部分,其输出波形质量直接影响高功率微波器件的输出,针对脉冲功率驱动源输出波形平顶存在的振荡问题,设计并研制了一套基于PFN-Marx的紧凑化脉冲功率驱动源并进行波形优化,通过PSpice仿真分析了不同结构的PFN-Marx发生器的参数,从而确定了PFN-Marx发生器的节数与级数;将输出波形存在的振荡问题转化为波形平顶区域各极值点距离基准值的偏移程度,以平顶纹波误差最小为目标,以均方根误差构建目标函数,在Simulink中建立电路模型,结合MATLAB遗传算法,对PFN的电感进行不断迭代优化,最后确定一组最优值,重新设计电感结构,使其可以方便快捷调整电感值,以此实现波形优化。优化后的单级PFN在10 Ω负载上输出波形前沿24.4 ns,脉宽93.6 ns,其平顶性能良好。装配完成的7级PFN-Marx发生器在充电电压53.8 kV、负载阻抗75 Ω条件下,输出准方波波形的峰值为189.2 kV,脉宽93.2 ns,前沿8.4 ns,后沿33.6 ns,纹波系数为3.5%。Abstract: Pulsed power drive source is a key part of high power microwave technology. The quality of the output waveform of pulsed power drive source directly affects the output of high power microwave devices. Aiming at the oscillation problem of the flat-top output waveform of pulse power drive source, we designed and developed a compact pulsed power drive source based on PFN-Marx, and optimized the waveform. The parameters of PFN-Marx generators with different structures are analyzed by PSpice simulation, so as to determine the number of sections and levels of the PFN-Marx generator; the oscillation problem of the output waveform is converted into the degree of deviation of each extreme point from the reference value in the flat-top area of the waveform. The objective function is constructed with the root mean square error with the minimum flat-top ripple error as the goal, and the circuit model is established in Simulink. Combined with the MATLAB genetic algorithm, the inductance of the PFN is continuously iteratively optimized. Finally, a set of optimal values is determined, and the inductance structure is redesigned to adjust the inductance value conveniently and to achieve quick waveform optimization. The optimized single-stage PFN outputs a waveform with a leading edge of 24.4 ns and a pulse width of 93.6 ns on a 10 Ω load, and it has good flat-top performance. The assembled 7-stage PFN-Marx generator has an output quasi-square wave under a charging voltage of 53.8 kV and a load impedance of 75 Ω. The pulse peak amplitude is 189.2 kV, pulse width is 93.2 ns, rise time is 8.4 ns, decrease time is 33.6 ns, and the ripple coefficient is 3.5%.
-
Key words:
- pulsed power /
- PFN-Marx /
- genetic algorithm /
- inductance regulation /
- waveform optimization
-
表 1 不同结构的PFN-Marx发生器参数
Table 1. Parameters of PFN-Marx generators with different structures
m n charging
voltage/kVsingle section
inductance/nHsingle section
capacitor/pFnumber of
capacitorsrise
time/nsenergy
storage/Jripple
coefficient/%3 3 120.00 350.00 642.86 9 12.85 41.66 11.5 3 8 120.00 131.25 241.07 24 6.27 41.66 10.5 4 6 90.00 131.25 428.57 28 7.53 41.66 10.7 5 5 72.00 126.00 642.86 42 8.50 41.66 10.9 7 6 51.43 75.00 750.00 42 7.53 41.66 10.7 表 2 优化后的电感值
Table 2. Optimized inductance values
L1/nH L2/nH L3/nH L4/nH L5/nH L6/nH 81.6 76.7 77.1 75.1 75.8 162.9 -
[1] 赵鸿燕, 周丽. 国外高功率微波武器发展研究[J]. 航空兵器, 2023, 30(4):42-48 doi: 10.12132/ISSN.1673-5048.2023.0038Zhao Hongyan, Zhou Li. Research on the development of high-power microwave weapon abroad[J]. Aero Weaponry, 2023, 30(4): 42-48 doi: 10.12132/ISSN.1673-5048.2023.0038 [2] 王永芳, 于槟恺, 王凌云. 基于专利分析的高功率微波武器技术发展研究[J]. 航空兵器, 2019, 26(5):19-25Wang Yongfang, Yu Binkai, Wang Lingyun. Research on the development of high power microwave weapon based on patent analysis[J]. Aero Weaponry, 2019, 26(5): 19-25 [3] 曾旭, 冯进军. 高功率微波源的现状及其发展[J]. 真空电子技术, 2015(2):18-27 doi: 10.3969/j.issn.1002-8935.2015.02.004Zeng Xu, Feng Jinjun. Current situation and developments of high power microwave sources[J]. Vacuum Electronics, 2015(2): 18-27 doi: 10.3969/j.issn.1002-8935.2015.02.004 [4] 牛卉, 伍洋, 李明. 国外高功率微波武器发展情况研究[J]. 飞航导弹, 2021(8):12-16,23Niu Hui, Wu Yang, Li Ming. Research on the development of high-power microwave weapons abroad[J]. Aerodynamic Missile Journal, 2021(8): 12-16,23 [5] 钱宝良. 国外高功率微波技术的研究现状与发展趋势[J]. 真空电子技术, 2015, 28(2):2-7 doi: 10.3969/j.issn.1002-8935.2015.02.001Qian Baoliang. The research status and developing tendency of high power microwave technology in foreign countries[J]. Vacuum Electronics, 2015, 28(2): 2-7 doi: 10.3969/j.issn.1002-8935.2015.02.001 [6] 樊玉伟. 磁绝缘线振荡器及其相关技术研究[D]. 长沙: 国防科学技术大学, 2007Fan Yuwei. Investigation of magnetically insulated transmission line oscillator and correlative technologies[D]. Changsha: National University of Defense Technology, 2007 [7] 耿玖源, 杨建华, 舒挺, 等. 10 GW甘油介质双螺旋Blumlein脉冲形成线[J]. 强激光与粒子束, 2023, 35:065004 doi: 10.11884/HPLPB202335.230005Geng Jiuyuan, Yang Jianhua, Shu Ting, et al. 10 GW dual-spiral Blumlein pulse forming lines in glycerol medium[J]. High Power Laser and Particle Beams, 2023, 35: 065004 doi: 10.11884/HPLPB202335.230005 [8] 谌怡, 刘毅, 王卫, 等. 层叠Blumlein纳秒脉冲形成线设计与实验[J]. 强激光与粒子束, 2014, 26:045012 doi: 10.11884/HPLPB201426.045012Shen Yi, Liu Yi, Wang Wei, et al. Design and experiments of stacked Blumlein nano-second pulse forming lines[J]. High Power Laser and Particle Beams, 2014, 26: 045012 doi: 10.11884/HPLPB201426.045012 [9] 杨建华, 钟辉煌, 舒挺, 等. 水介质Blumlein型螺旋脉冲形成线的研究[J]. 强激光与粒子束, 2005, 17(8):1191-1194Yang Jianhua, Zhong Huihuang, Shu Ting, et al. Water-dielectric Blumlein type of PFL with spiral line[J]. High Power Laser and Particle Beams, 2005, 17(8): 1191-1194 [10] 伍友成, 冯传均, 付佳斌, 等. 基于PFN-Marx技术的紧凑型重频脉冲功率源[J]. 强激光与粒子束, 2024, 36:055019 doi: 10.11884/HPLPB202436.230354Wu Youcheng, Feng Chuanjun, Fu Jiabin, et al. A compact PFN-Marx repetitive pulsed power source[J]. High Power Laser and Particle Beams, 2024, 36: 055019 doi: 10.11884/HPLPB202436.230354 [11] Huang Liyang, Xiang Zhongwu, Deng Bingfang, et al. A compact gigawatt pulsed power generator for high-power microwave application[J]. IEEE Transactions on Electron Devices, 2023, 70(7): 3885-3891. doi: 10.1109/TED.2023.3279811 [12] 李志强, 杨建华, 张建德, 等. 紧凑重频PFN-Marx脉冲发生器[J]. 强激光与粒子束, 2016, 28:015013 doi: 10.11884/HPLPB201628.015013Li Zhiqiang, Yang Jianhua, Zhang Jiande, et al. A compact repetitive PFN-Marx generator[J]. High Power Laser and Particle Beams, 2016, 28: 015013 doi: 10.11884/HPLPB201628.015013 [13] 宋法伦, 李飞, 龚海涛, 等. 高功率重复频率Marx型脉冲功率源小型化技术研究进展[J]. 强激光与粒子束, 2018, 30:020201 doi: 10.11884/HPLPB201830.170337Song Falun, Li Fei, Gong Haitao, et al. Research progress on miniaturization of high power repetition frequency Marx type pulse power source[J]. High Power Laser and Particle Beams, 2018, 30: 020201 doi: 10.11884/HPLPB201830.170337 [14] 刘世飞, 张建德, 张自成. 高功率紧凑PFN-Marx发生器研究进展综述[J]. 强激光与粒子束, 2022, 34:075001 doi: 10.11884/HPLPB202234.210483Liu Shifei, Zhang Jiande, Zhang Zicheng. Review of high power compact pulse forming network-Marx generators[J]. High Power Laser and Particle Beams, 2022, 34: 075001 doi: 10.11884/HPLPB202234.210483 [15] Bluhm H. 脉冲功率系统的原理与应用[M]. 江伟华, 张弛, 译. 北京: 清华大学出版社, 2008Bluhm H. Pulsed power systems: principles and applications[M]. Jiang Weihua, Zhang Chi, trans. Beijing: Tsinghua University Press, 2008 [16] 李志强, 杨建华, 胡益, 等. 寄生传输线对PFN-Marx输出波形的影响[J]. 强激光与粒子束, 2016, 28:045011 doi: 10.11884/HPLPB201628.125011Li Zhiqiang, Yang Jianhua, Hu Yi, et al. Impact of parasitic transmission line on output of PFN-Marx generator[J]. High Power Laser and Particle Beams, 2016, 28: 045011 doi: 10.11884/HPLPB201628.125011 [17] Tewari S V, Umbarkar S B, Agarwal R, et al. Development and analysis of PFN based compact Marx generator using finite integration technique for an antenna load[J]. IEEE Transactions on Plasma Science, 2013, 41(10): 2684-2690. doi: 10.1109/TPS.2013.2279483 [18] Lassalle F, Morell A, Loyen A, et al. Development and test of a 400-kV PFN Marx with compactness and rise time optimization[J]. IEEE Transactions on Plasma Science, 2018, 46(10): 3313-3319. doi: 10.1109/TPS.2018.2837344 [19] Adler R J, Gilbrech J A, Price D T. A modular PFN Marx with a unique charging system and feedthrough[C]//Proceedings of 2009 IEEE Pulsed Power Conference. 2009: 1201-1206. [20] 王传伟, 李洪涛. 基于单纯形优化法的准方波脉冲形成网络设计[J]. 强激光与粒子束, 2020, 32:065001 doi: 10.11884/HPLPB202032.190374Wang Chuanwei, Li Hongtao. Design of trapezoidal pulse forming network based on simplex optimization method[J]. High Power Laser and Particle Beams, 2020, 32: 065001 doi: 10.11884/HPLPB202032.190374