留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于GaN的高频高功率密度混合集成电源设计

朱伟龙 王鹏 郑辰雅 孙鹏飞

朱伟龙, 王鹏, 郑辰雅, 等. 基于GaN的高频高功率密度混合集成电源设计[J]. 强激光与粒子束, 2025, 37: 035015. doi: 10.11884/HPLPB202537.240318
引用本文: 朱伟龙, 王鹏, 郑辰雅, 等. 基于GaN的高频高功率密度混合集成电源设计[J]. 强激光与粒子束, 2025, 37: 035015. doi: 10.11884/HPLPB202537.240318
Zhu Weilong, Wang Peng, Zheng Chenya, et al. Design of high-frequency, high-power density hybrid integrated power supply based on GaN high electron mobility transistors[J]. High Power Laser and Particle Beams, 2025, 37: 035015. doi: 10.11884/HPLPB202537.240318
Citation: Zhu Weilong, Wang Peng, Zheng Chenya, et al. Design of high-frequency, high-power density hybrid integrated power supply based on GaN high electron mobility transistors[J]. High Power Laser and Particle Beams, 2025, 37: 035015. doi: 10.11884/HPLPB202537.240318

基于GaN的高频高功率密度混合集成电源设计

doi: 10.11884/HPLPB202537.240318
基金项目: 模拟集成电路国家级重点实验室基金项目(JCKY2022210C005)
详细信息
    作者简介:

    朱伟龙,zhuweilong@cetc.com.cn

  • 中图分类号: TN45;TN86

Design of high-frequency, high-power density hybrid integrated power supply based on GaN high electron mobility transistors

  • 摘要: 混合集成DC-DC变换器因其工作温度范围宽和长期可靠性高在苛刻环境及高可靠需求应用场景中得到广泛应用。基于GaN HEMT器件优异的高频低损耗特性,结合有源箝位软开关拓扑、混合集成微组装技术和高载流低热阻气密封装技术,设计了一款28 V输入、5 V/20 A输出的混合集成DC-DC变换器。该变换器开关频率800 kHz,峰值效率达92%。详细阐述了有源箝位功率电路设计、GaN HEMT驱动电路寄生参数与震荡电压控制、同步整流时序与死区时间优化、厚膜混合集成工艺及散热的设计方法和技术细节,并通过仿真与样机实验,验证和展示了GaN HEMT和混合集成电路在高功率密度和高效率方面的优势。
  • 图  1  有源箝位正激电路及关键波形

    Figure  1.  Active clamp forward converter and key waveforms

    图  2  电路总体方案框图

    Figure  2.  Block diagram of the overall circuit

    图  3  两种类型GaN器件结构示意图

    Figure  3.  Schematic diagram of two types of GaN device structures

    图  4  氮化镓栅极驱动电路设计

    Figure  4.  GaN HEMT gate driver circuit and the simulation results

    图  5  采用混合集成方案降低寄生电感

    Figure  5.  Using hybrid integration to reduce parasitic inductance

    图  6  有源箝位及同步整流死区控制

    Figure  6.  Active clamp and synchronous rectification dead time control

    图  7  DC-DC变换器厚膜混合集成方案设计

    Figure  7.  Thick-film hybrid integrated circuit design for the DC-DC converter

    图  8  电路中的散热优化设计

    Figure  8.  Thermal optimization design

    图  9  电源模块热仿真结果

    Figure  9.  Thermal simulation result

    图  10  DC-DC变换器工作波形图

    Figure  10.  Test waveforms of the DC-DC converter

    图  11  DC-DC变换器输出功率及效率对比

    Figure  11.  Comparison of output power and efficiency of DC-DC converters

    表  1  开关管器件参数对比表

    Table  1.   Main device performance parameter comparison

    device VDS,max/V ID/A RDS(on)/mΩ Qg/nC Coss/pF Qrr/nC dimensions/(mm×mm)
    SiR514DP 100 84.8 5 31 720 56 5.15×6.15
    INN100W032A 100 60 3.2 9.2 460 0 3.5×2.13
    下载: 导出CSV
  • [1] Wang Yang. Quality control of thick film hybrid integrated circuit process design and manufacturing[J]. Journal of Physics: Conference Series, 2021, 2037: 012008. doi: 10.1088/1742-6596/2037/1/012008
    [2] 王浩. 厚膜混合集成电路封装互连材料和工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2014

    Wang Hao. Interconnect materials and processes for packaging thick film HIC[D]. Harbin: Harbin Institute of Technology, 2014
    [3] Lidow A, d Rooij M, Strydom J, et al. GaN transistors for efficient power conversion[M]. 3rd ed. Hoboken: John Wiley & Sons Ltd, 2020.
    [4] Nguyen-Van Q, Pham-Nguyen L, Han H D, et al. Efficient GaN-based hybrid DC-DC converter with simple and low-cost bootstrap gate drivers for LED lighting applications[J]. AEU - International Journal of Electronics and Communications, 2022, 155: 154330. doi: 10.1016/j.aeue.2022.154330
    [5] Rodríguez-Benítez O M, Ponce-Silva M, Aquí-Tapia J A, et al. Comparative performance and assessment study of a current-fed DC-DC resonant converter combining Si, SiC, and GaN-based power semiconductor devices[J]. Electronics, 2020, 9: 1982. doi: 10.3390/electronics9111982
    [6] 佟强, 刘贺, 曲璐. 基于氮化镓的反激同步整流DC/DC变换器设计[J]. 电源学报, 2024, 22(2):81-89

    Tong Qiang, Liu He, Qu Lu. Design of synchronous rectifier flyback DC/DC converter based on GaN[J]. Journal of Power Supply, 2024, 22(2): 81-89
    [7] 程哲. 第三代半导体材料及器件中的热科学和工程问题[J]. 物理学报, 2021, 70:236502

    Cheng Zhe. Thermal science and engineering in third-generation semiconductor materials and devices[J]. Acta Physica Sinica, 2021, 70: 236502
    [8] 张宗烽. 先进封装系统中互连结构建模与GaN HEMT热分析方法研究[D]. 杭州: 杭州电子科技大学, 2023

    Zhang Zongfeng. Research on interconnect structure modeling and GaN HEMT thermal analysis methods in advanced packaging systems[D]. Hangzhou: Hangzhou Dianzi University, 2023
    [9] 赵正平. GaN高频开关电力电子学的新进展[J]. 半导体技术, 2016, 41(1):1-9

    Zhao Zhengping. New advances in GaN high frequency switch power electronics[J]. Semiconductor Technology, 2016, 41(1): 1-9
    [10] Li Xiaobin, Ma Hongbo, Yi Junhong, et al. A comparative study of GaN HEMT and Si MOSFET-based active clamp forward converters[J]. Energies, 2020, 13: 4160. doi: 10.3390/en13164160
    [11] 崔梅婷. GaN器件的特性及应用研究[D]. 北京: 北京交通大学, 2015

    Cui Meiting. Research on characteristics and applications of GaN device[D]. Beijing: Beijing Jiaotong University, 2015
    [12] Ghavidel Jalise M, Allahyari H, Shoaei A, et al. A self-driven synchronous rectification wide-range ZVS single-switch forward converter controlled using the variable inductance[J]. IET Power Electronics, 2023, 16(2): 320-332. doi: 10.1049/pel2.12386
    [13] 王瑞东. 正激式有源箝位电压模开关电源的研究[D]. 西安: 西安电子科技大学, 2021

    Wang Ruidong. Research on forward active clamping voltage mode switching power supply[D]. Xi’an: Xidian University, 2021
    [14] 陈伟, 李俊. 电源散热设计在高功率DC-DC变换器中的应用[J]. 电源学报, 2021, 19(4):52-60

    Chen Wei, Li Jun. Application of power dissipation design in high-power DC-DC converters[J]. Journal of Power Supply, 2021, 19(4): 52-60
    [15] Kim N, Han C. Thermal analysis and design of a 75-W hybrid-type DC–DC converter for space applications[J]. Microelectronics Reliability, 2014, 54(8): 1555-1561. doi: 10.1016/j.microrel.2014.03.011
    [16] Kumar V, Garg H, Singh C, et al. Mathematical and simulation analysis of natural convection heat transfer for DC–DC converter[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234(20): 4136-4146. doi: 10.1177/0954406220920318
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  148
  • HTML全文浏览量:  40
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-08
  • 修回日期:  2025-02-16
  • 录用日期:  2025-02-16
  • 网络出版日期:  2025-03-06
  • 刊出日期:  2025-03-15

目录

    /

    返回文章
    返回