留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光焦斑尺寸对极紫外辐射影响的理论研究

蓝翔 李学成 杨顺熠 唐桧波 况龙钰 胡广月

蓝翔, 李学成, 杨顺熠, 等. 激光焦斑尺寸对极紫外辐射影响的理论研究[J]. 强激光与粒子束, 2025, 37: 052003. doi: 10.11884/HPLPB202537.240327
引用本文: 蓝翔, 李学成, 杨顺熠, 等. 激光焦斑尺寸对极紫外辐射影响的理论研究[J]. 强激光与粒子束, 2025, 37: 052003. doi: 10.11884/HPLPB202537.240327
Lan Xiang, Li Xuecheng, Yang Shunyi, et al. Theoretical investigation into effect of laser focal spot size on extreme ultraviolet radiation[J]. High Power Laser and Particle Beams, 2025, 37: 052003. doi: 10.11884/HPLPB202537.240327
Citation: Lan Xiang, Li Xuecheng, Yang Shunyi, et al. Theoretical investigation into effect of laser focal spot size on extreme ultraviolet radiation[J]. High Power Laser and Particle Beams, 2025, 37: 052003. doi: 10.11884/HPLPB202537.240327

激光焦斑尺寸对极紫外辐射影响的理论研究

doi: 10.11884/HPLPB202537.240327
基金项目: 国家自然科学基金项目(12175230, 11775223, 12205298);中国科学院战略先导专项项目(XDB16);统筹推进世界一流大学和一流学科建设专项资金资助项目(YD2140002006)
详细信息
    作者简介:

    蓝 翔,SA21214038@mail.ustc.edu.cn

    通讯作者:

    唐桧波,tanghb@ustc.edu.cn

    况龙钰,kuangly0402@sina.com

    胡广月,gyhu@ustc.edu.cn

  • 中图分类号: O53

Theoretical investigation into effect of laser focal spot size on extreme ultraviolet radiation

  • 摘要: 为了解激光焦斑尺寸对极紫外转换效率影响及产生影响的物理机制,通过理论解析的方式提出了激光烧蚀平面靶产生冕区等离子体的二维瞬态膨胀模型来研究激光焦斑对极紫外光转换效率的影响。发现在激光光强7.45×1010 W/cm2、半高全宽5 ns、波长1064 nm时,随着激光焦斑半径从60 μm增大到300 μm,相应地极紫外转换效率从1%增大到5.5%;而焦斑半径大于300 μm后,相应地极紫外转换效率保持在5.5%。这是由于激光烧蚀平面靶产生的冕区等离子体从初始的一维膨胀到随后的二维膨胀过程决定了发射极紫外光的等离子体区的饱和尺寸,并最终决定了极紫外光的转换效率。转换效率随焦斑半径变化的趋势可以解释激光烧蚀锡靶实验观察到的物理现象。
  • 图  1  激光烧蚀平面靶产生的等离子体的膨胀过程的示意图

    Figure  1.  Schematic diagram of the plasma expansion of laser-ablated planar target

    图  2  激光烧蚀平面靶产生等离子体沿着靶法线方向一维膨胀的密度、温度分布示意图[22]

    Figure  2.  One-dimensional density and temperature profiles of plasma produced by laser ablated planar target and expanding along target normal[22]

    图  3  二维瞬态膨胀的密度分布建模过程

    Figure  3.  The process of modelling the density distribution of a two-dimensional transient expansion

    Figures (a)(b)(c) are the density distributions of the characteristic moment t1 when the isodensity surface 0.1 nc reaches the steady-state position, figures (d)(e)(f) are the density distributions of the characteristic moment t2 when the isodensity surface 0.01nc reaches the steady-state position, and figures (g)(h)(i) are the density distributions of the characteristic moment t3 when the isodensity surface 0.001nc reaches the steady-state position; figures (a)(d)(g) are the density distributions of one-dimensional expansion, figures (d)(e)(f) are the density distributions of two-dimensional transient expansion, figures (c)(f)(i) are the density distributions of two-dimensional stationary expansion. The density profiles of the one-dimensional expansion corresponding to (a)(d)(g) and the two-dimensional steady state expansion corresponding to (c)(f)(i) are multiplied to obtain the density distribution of the two-dimensional transient expansion corresponding to (d)(e)(f).

    图  4  横向(a)与纵向(b)上的电子温度分布

    Figure  4.  Electron temperature distribution in the transverse (a) and longitudinal (b) directions

    图  5  不同焦斑半径时二维稳态膨胀的电子密度ne(cm−3)空间分布

    Figure  5.  Spatial distribution of electron density at 2D steady-state expansion vs laser focal spot radii. The cases with laser focal spot radius of 60 μm, 105 μm, and 158 μm are present from left to right

    图  6  不同焦斑尺寸下各特征密度面的稳态位置及到达相应位置的时间

    Figure  6.  Steady state position and time to reach the corresponding position for each characteristic density surface for different focal spot sizes

    图  7  焦斑半径60 μm,电子密度(a)、电子温度(b)、发射率(c)和净发射率(d)的空间分布

    Figure  7.  Spatial distribution of electron density(a), electron temperature(b), emissivity(c), net emissivity(d) at laser focal spot radius of 60 μm, and t = 1 ns, 2 ns, 7 ns. The 0.1nc density surface reaches stable location at 1 ns

    图  8  焦斑半径105 μm,电子密度(a)、电子温度(b)、发射率(c)和净发射率(d)的空间分布

    Figure  8.  Spatial distribution of electron density(a), electron temperature(b), emissivity(c), net emissivity(d) at laser focal spot radius of 105 μm, and t = 2 ns, 4 ns, 11 ns from left to right. The 0.1nc density surface reaches stable location at 2 ns

    图  9  焦斑半径158 μm,电子密度(a)、电子温度(b)、发射率(c)和净发射率(d)的空间分布

    Figure  9.  Spatial distribution of electron density(a), electron temperature(b), emissivity(c), net emissivity(d) at laser focal spot radius of 158 μm, and t = 3 ns, 6 ns, 15 ns from left to right. The 0.1nc density surface reaches stable location at 3 ns

    图  10  焦斑半径60 μm,t=1 ns、2 ns、7 ns时,在R=0处沿着纵向的一维物理量分布

    Figure  10.  One-dimension longitudinal profiles along the R=0 line at laser focal spot radius of 60 μm at the moments of t=1 ns, 2 ns, 7 ns

    图  11  焦斑半径105 μm,t=2 ns、4 ns、11 ns时,在R=0处沿着纵向的一维物理量分布

    Figure  11.  One-dimension longitudinal profiles along the R=0 line at laser focal spot radius of 105 μm at the moments of t=2 ns, 4 ns, 11 ns

    图  12  焦斑半径158 μm,t=3 ns、6 ns、15 ns时,在R=0处沿着纵向的一维物理量分布

    Figure  12.  One-dimension longitudinal profiles along the R=0 line at laser focal spot radius of 158 μm, at the moments of t=3 ns, 6 ns, 15 ns

    图  13  不同焦斑尺寸下瞬时转换效率ηce(t)随时间的变化

    Figure  13.  Temporal evolution of instantaneous conversion efficiency ηce(t) at laser focal spot sizes of 60 μm (red), 105 μm (black), and 158 μm (blue)

    图  14  不同焦斑尺寸时的平均转换效率ηace与激光结束时的有效发射区长度LEUV

    Figure  14.  Time-averaged conversion efficiency ηace and length of effective radiation zone LEUV at the end of laser irradiation versus laser focal spot sizes

  • [1] Wagner C, Harned N. EUV lithography: lithography gets extreme[J]. Nature Photonics, 2010, 4(1): 24-26. doi: 10.1038/nphoton.2009.251
    [2] Bakshi V. EUV sources for lithography[M]. Bellingham: SPIE, 2006.
    [3] Banine V Y, Koshelev K N, Swinkels G H P M. Physical processes in EUV sources for microlithography[J]. Journal of Physics D: Applied Physics, 2011, 44: 253001. doi: 10.1088/0022-3727/44/25/253001
    [4] Versolato O O. Physics of laser-driven tin plasma sources of EUV radiation for nanolithography[J]. Plasma Sources Science and Technology, 2019, 28: 083001. doi: 10.1088/1361-6595/ab3302
    [5] Endo A, Hoshino H, Suganuma T, et al. Laser produced EUV light source development for HVM[C]//Proceedings of SPIE 6517, Emerging Lithographic Technologies XI. San Jose: SPIE, 2007: 65170O.
    [6] Freeman J R, Harilal S S, Hassanein A. Enhancements of extreme ultraviolet emission using prepulsed Sn laser-produced plasmas for advanced lithography applications[J]. Journal of Applied Physics, 2011, 110: 083303. doi: 10.1063/1.3647779
    [7] Nishihara K, Sunahara A, Sasaki A, et al. Advanced laser-produced EUV light source for HVM with conversion efficiency of 5-7% and B-field mitigation of ions[C]//Proceedings of SPIE 6921, Emerging Lithographic Technologies XII. San Jose: SPIE, 2008: 69210Y.
    [8] Tanaka H, Matsumoto A, Akinaga K, et al. Comparative study on emission characteristics of extreme ultraviolet radiation from CO2 and Nd: YAG laser-produced tin plasmas[J]. Applied Physics Letters, 2005, 87: 041503. doi: 10.1063/1.1989441
    [9] Aota T, Tomie T. Ultimate efficiency of extreme ultraviolet radiation from a laser-produced plasma[J]. Physical Review Letters, 2005, 94: 015004. doi: 10.1103/PhysRevLett.94.015004
    [10] Okuno T, Fujioka S, Nishimura H, et al. Low-density tin targets for efficient extreme ultraviolet light emission from laser-produced plasmas[J]. Applied Physics Letters, 2006, 88: 161501. doi: 10.1063/1.2195693
    [11] 林楠, 杨文河, 陈韫懿, 等. 极紫外光刻光源的研究进展及发展趋势[J]. 激光与光电子学进展, 2022, 59:0922002

    Lin Nan, Yang Wenhe, Chen Yunyi, et al. Research progress and development trend of extreme ultraviolet lithography source[J]. Laser & Optoelectronics Progress, 2022, 59: 0922002
    [12] Miyamoto S, Shimoura A, Amano S, et al. Laser wavelength and spot diameter dependence of extreme ultraviolet conversion efficiency in ω, 2ω, and 3ω Nd: YAG laser-produced plasmas[J]. Applied Physics Letters, 2005, 86: 261502. doi: 10.1063/1.1968415
    [13] Tao Y, Harilal S S, Tillack M S, et al. Effect of focal spot size on in-band 13.5 nm extreme ultraviolet emission from laser-produced Sn plasma[J]. Optics Letters, 2006, 31(16): 2492-2494. doi: 10.1364/OL.31.002492
    [14] Fujioka S, Nishimura H, Nishihara K, et al. Opacity effect on extreme ultraviolet radiation from laser-produced tin plasmas[J]. Physical Review Letters, 2005, 95: 235004. doi: 10.1103/PhysRevLett.95.235004
    [15] Harilal S S, Coons R W, Hough P, et al. Influence of spot size on extreme ultraviolet efficiency of laser-produced Sn plasmas[J]. Applied Physics Letters, 2009, 95: 221501. doi: 10.1063/1.3270526
    [16] Coons R W, Campos D, Crank M, et al. Comparison of EUV spectral and ion emission features from laser-produced Sn and Li plasmas[C]//Proceedings of SPIE 7636, Extreme Ultraviolet (EUV) Lithography. San Jose: SPIE, 2010: 763636.
    [17] Atzeni S, Meyer-ter-Vehn J. 惯性聚变物理[M]. 沈百飞, 译. 北京: 科学出版社, 2008

    Atzeni S, Meyer-ter-Vehn J. Physics of inertial fusion[M]. Shen Baifei, trans. Beijing: Science Press, 2008
    [18] Hu G Y, Zhang J Y, Zheng J, et al. Angular distribution and conversion of multi-keV L-shell X-ray sources produced from nanosecond laser irradiated thick-foil targets[J]. Laser and Particle Beams, 2008, 26(4): 661-670. doi: 10.1017/S0263034608000682
    [19] Hu Guangyue, Zheng Jian, Shen Baifei, et al. Characterization of a multi-keV X-ray source produced by nanosecond laser irradiation of a solid target: the influence of laser focus spot and target thickness[J]. Physics of Plasmas, 2008, 15: 023103. doi: 10.1063/1.2831034
    [20] Hu Guangyue, Liu Shenye, Zheng Jian, et al. Efficient K-shell X-ray sources produced with titanium foils[J]. Physics of Plasmas, 2007, 14: 033103. doi: 10.1063/1.2446286
    [21] 胡广月, 刘慎业, 张继彦, 等. 长脉冲keV X射线源的辐射特征[J]. 强激光与粒子束, 2007, 19(5):771-776

    Hu Guangyue, Liu Shenye, Zhang Jiyan, et al. Emission characteristic of long laser pulse keV X-ray source[J]. High Power Laser and Particle Beams, 2007, 19(5): 771-776
    [22] Fabbro R, Max C, Fabre E. Planar laser-driven ablation: effect of inhibited electron thermal conduction[J]. Physics of Fluids, 1985, 28(5): 1463-1481. doi: 10.1063/1.864982
    [23] Merino M, Cichocki F, Ahedo E. A collisionless plasma thruster plume expansion model[J]. Plasma Sources Science and Technology, 2015, 24: 035006. doi: 10.1088/0963-0252/24/3/035006
    [24] Spitzer L Jr, Härm R. Transport phenomena in a completely ionized gas[J]. Physical Review, 1953, 89(5): 977-981. doi: 10.1103/PhysRev.89.977
    [25] Sasaki A, Sunahara A, Furukawa H, et al. Modeling of radiative properties of Sn plasmas for extreme-ultraviolet source[J]. Journal of Applied Physics, 2010, 107: 113303. doi: 10.1063/1.3373427
    [26] Nishihara K, Sunahara A, Sasaki A, et al. Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography[J]. Physics of Plasmas, 2008, 15: 056708. doi: 10.1063/1.2907154
  • 加载中
图(14)
计量
  • 文章访问数:  120
  • HTML全文浏览量:  66
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-14
  • 修回日期:  2024-11-27
  • 录用日期:  2024-11-29
  • 网络出版日期:  2025-02-15
  • 刊出日期:  2025-03-31

目录

    /

    返回文章
    返回