[1] |
吴洋. 强流高增益相对论速调管放大器理论和实验研究[D]. 北京: 清华大学, 2013Wu Yang. Theoretical and experiment study on intense beam high gain relativistic klystron amplifier[D]. Beijing: Tsinghua University, 2013
|
[2] |
Wu Yang, Xu Zhou, Jin Xiao, et al. A long pulse relativistic klystron amplifier driven by low RF power[J]. IEEE Transactions on Plasma Science, 2012, 40(10): 2762-2766. doi: 10.1109/TPS.2012.2210250
|
[3] |
Wu Yankai, Xie H Q, Li Z H, et al. Gigawatt peak power generation in a relativistic klystron amplifier driven by 1 kW seed-power[J]. Physics of Plasmas, 2013, 20: 113102. doi: 10.1063/1.4828975
|
[4] |
丁耀根. 大功率速调管的理论与计算模拟[M]. 北京: 国防工业出版社, 2008: 73-75Ding Yaogen. Theory and computer simulation of high power klystron[M]. Beijing: National Defence Industry Press, 2008: 73-75
|
[5] |
何琥, 李士锋, 刘振帮. 速调管放大器输入腔的匹配理论和模拟研究[J]. 强激光与粒子束, 2024, 36:103004 doi: 10.11884/HPLPB202436.240226He Hu, Li Shifeng, Liu Zhenbang. Matching theory and PIC simulation for klystron input cavity with microwave beam[J]. High Power Laser and Particle Beams, 2024, 36: 103004 doi: 10.11884/HPLPB202436.240226
|
[6] |
Carlsten B E, Ferguson P. Numerical determination of the matching conditions and drive characteristics for a klystron input cavity with beam[J]. IEEE Transactions on Electron Devices, 1997, 44(5): 894-900. doi: 10.1109/16.568055
|
[7] |
Carlsten B E, Faehl R J, Fazio M V, et al. Beam-cavity interaction physics for mildly relativistic, intense-beam klystron amplifiers[J]. IEEE Transactions on Plasma Science, 1994, 22(5): 730-739. doi: 10.1109/27.338289
|
[8] |
Wilsen C B, Luginsland J W, Lau Y Y, et al. A simulation study of beam loading on a cavity[J]. IEEE Transactions on Plasma Science, 2002, 30(3): 1160-1168. doi: 10.1109/TPS.2002.801623
|
[9] |
Carlsten B E, Ferguson P, Sprehn D. Accuracy of the equivalent circuit model using a fixed beam impedance for klystron gain cavities[J]. IEEE Transactions on Plasma Science, 1998, 26(6): 1745-1749. doi: 10.1109/27.747895
|