留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光瑞利散射法用于喷气负载气流场分布探测

王亮平 李沫 王晟 张振荣

王亮平, 李沫, 王晟, 等. 激光瑞利散射法用于喷气负载气流场分布探测[J]. 强激光与粒子束, 2025, 37: 045007. doi: 10.11884/HPLPB202537.240341
引用本文: 王亮平, 李沫, 王晟, 等. 激光瑞利散射法用于喷气负载气流场分布探测[J]. 强激光与粒子束, 2025, 37: 045007. doi: 10.11884/HPLPB202537.240341
Wang Liangping, Li Mo, Wang Sheng, et al. Using Rayleigh scattering method to diagnose the airflow field of Z-pinch gas-puff load[J]. High Power Laser and Particle Beams, 2025, 37: 045007. doi: 10.11884/HPLPB202537.240341
Citation: Wang Liangping, Li Mo, Wang Sheng, et al. Using Rayleigh scattering method to diagnose the airflow field of Z-pinch gas-puff load[J]. High Power Laser and Particle Beams, 2025, 37: 045007. doi: 10.11884/HPLPB202537.240341

激光瑞利散射法用于喷气负载气流场分布探测

doi: 10.11884/HPLPB202537.240341
详细信息
    作者简介:

    王亮平,wangliangping@nint.ac.cn

  • 中图分类号: TL99

Using Rayleigh scattering method to diagnose the airflow field of Z-pinch gas-puff load

  • 摘要: 喷气负载是Z箍缩研究广泛采用的一种负载构型。在喷气负载中,准确诊断在施加电流之前气流场初始分布,对于控制内爆动力学不稳定性、提高X射线辐射输出具有重要意义。开展利用平面紫外激光瑞利散射法对喷气负载气流场分布进行诊断的可行性实验,获得了Z箍缩喷气负载气流壳层随时间演化的图像信息,可以得出,喷气负载在靠近喷嘴端面1 cm区域内形成低密度空心区,同时径向呈现喇叭形外扩,与弹道气流解析模型计算结果较为吻合。实验中利用平面瑞利散射所获得的气体密度要高于模拟得到的密度3~4个量级,主要原因在于喷嘴气流场在低压及低温条件下形成了团簇结构,大大增强了光的瑞利散射效应。尽管如此,利用激光瑞利散射法仍可获得细节清晰的气流场相对密度分布。
  • 图  1  平面激光瑞利散射诊断喷气负载气流密度

    Figure  1.  Planar laser Rayleigh scattering is used for investigating the gas flow field of a gas-puff load

    图  2  单层喷气负载气流场壳层不同时刻沿轴向剖面图

    Figure  2.  The r-z cross section images of a single gas-puff for different time with Rayleigh scattering method

    图  3  实验结果与弹道模型计算结果对比

    Figure  3.  Comparison of the experimental results with the calculation results

    图  4  +700 μs时刻较大视场内气流场分布

    Figure  4.  The gas flow field with large filed of view in +700 μs

  • [1] Ryutov D D, Derzon M S, Matzen M K. The physics of fast Z pinches[J]. Reviews of Modern Physics, 2000, 72(1): 167-223.
    [2] Spielman R B, de Groot J S. Z pinches—A historical view[J]. Laser and Particle Beams, 2001, 19(4): 509-525.
    [3] 阳庆国, 黄显宾, 刘冬兵, 等. 聚龙一号装置上首次铝套筒Z箍缩X射线背光照相实验[J]. 强激光与粒子束, 2016, 28:040101 doi: 10.11884/HPLPB201628.120101

    Yang Qingguo, Huang Xianbin, Liu Dongbing, et al. The first X-ray backlighting of Z-pinched aluminium liner experiment on PTS facility[J]. High Power Laser and Particle Beams, 2016, 28: 040101 doi: 10.11884/HPLPB201628.120101
    [4] Ware K D, Bell D E, Gullickson R L, et al. Evolving approaches to pulsed X-ray sources[J]. IEEE Transactions on Plasma Science, 2002, 30(5): 1733-1741.
    [5] Thornhill J W, Whitney K G, Davis J, et al. Investigation of K-shell emission from moderate-Z, low-η (-velocity), Z-pinch implosions[J]. Journal of Applied Physics, 1996, 80(2): 710-718.
    [6] Giuliani J L, Commisso R J. A review of the gas-puff Z-pinch as an X-ray and neutron source[J]. IEEE Transactions on Plasma Science, 2015, 43(8): 2385-2453.
    [7] Jennings C A, Ampleford D J, Lamppa D C, et al. Computational modeling of Krypton gas puffs with tailored mass density profiles on Z[J]. Physics of Plasmas, 2015, 22: 056316. doi: 10.1063/1.4921154
    [8] Harvey-Thompson A J, Jennings C A, Jones B, et al. Investigating the effect of adding an on-axis jet to Ar gas puff Z pinches on Z[J]. Physics of Plasmas, 2016, 23: 101203.
    [9] Coverdale C A, Deeney C, Velikovich A L, et al. Neutron production and implosion characteristics of a deuterium gas-puff Z pinch[J]. Physics of Plasmas, 2007, 14: 022706.
    [10] Coverdale C A, Deeney C, Velikovich A L, et al. Deuterium gas-puff Z-pinch implosions on the Z accelerator[J]. Physics of Plasmas, 2007, 14: 056309.
    [11] 邹晓兵, 王新新, 罗承沐, 等. 喷气Z箍缩负载的质量线密度确定[J]. 强激光与粒子束, 2002, 14(3):473-475

    Zou Xiaobin, Wang Xinxin, Luo Chengmu, et al. Determination of line mass density for the gas load of a gas puff Z-pinch[J]. High Power Laser and Particle Beams, 2002, 14(3): 473-475
    [12] Smith III R S, Doggett W O, Roth I, et al. Supersonic gas shell for puff pinch experiments[J]. Applied Physics Letters, 1982, 41(6): 572-573.
    [13] Qi Niansheng, Failor B H, Banister J, et al. Two-dimensional gas density and velocity distributions of a 12-cm-diameter, triple-nozzle argon Z-pinch load[J]. IEEE Transactions on Plasma Science, 2005, 33(2): 752-762.
    [14] Jackson S L, Weber B V, Mosher D, et al. A comparison of planar, laser-induced fluorescence, and high-sensitivity interferometry techniques for gas-puff nozzle density measurements[J]. Review of Scientific Instruments, 2008, 79: 10E717. doi: 10.1063/1.2979871
    [15] 王晟, 邵珺, 李国华, 等. 基于检测分子瑞利散射光多普勒频移的流场多点速度测量[J]. 中国激光, 2015, 42:1015002

    Wang Sheng, Shao Jun, Li Guohua, et al. Multi-point velocity measurement of gas flow field based on detecting the Doppler frequency shift of molecular Rayleigh scattering[J]. Chinese Journal of Lasers, 2015, 42: 1015002
    [16] 刘晶儒, 胡志云, 张振荣, 等. 激光光谱技术在燃烧流场诊断中的应用[J]. 光学 精密工程, 2011, 19(2):284-296

    Liu Jingru, Hu Zhiyun, Zhang Zhenrong, et al. Laser spectroscopy applied to combustion diagnostics[J]. Optics and Precision Engineering, 2011, 19(2): 284-296
    [17] 张振荣, 李国华, 叶景峰, 等. 利用拉曼散射法在线测量航空发动机燃烧场主要组分[J]. 现代应用物理, 2016, 7:040303

    Zhang Zhenrong, Li Guohua, Ye Jingfeng, et al. The online measuring of the major species in aeroengine combustor using Raman scattering method[J]. Modern Applied Physics, 2016, 7: 040303
    [18] 王秉超, 李良德, 马文琦, 等. 光学[M]. 长春: 吉林大学出版社, 1991

    Wang Bingchao, Li Liangde, Ma Wenqi, et al. Optics[M]. Changchun: Jilin University Press, 1991
    [19] 刘沙, 王勇, 袁瑞峰, 等. 统一气体动理学方法研究进展[J]. 气体物理, 2019, 4(4):1-13

    Liu Sha, Wang Yong, Yuan Ruifeng, et al. Advance in unified methods based on gas-kinetic theory[J]. Physics of Gases, 2019, 4(4): 1-13
    [20] 代连福, 刘振宇, 吴慧英. 基于UGKS的过渡区方柱绕流数值研究[J]. 工程热物理学报, 2021, 42(4):953-958

    Dai Lianfu, Liu Zhenyu, Wu huiying. Numerical simulation of gas flow over square cylinder in transition regime based on UGKS[J]. Journal of Engineering Thermophysics, 2021, 42(4): 953-958
    [21] Mosher D, Weber B V, Moosman B, et al. Measurement and analysis of gas-puff density distributions for plasma radiation source z pinches[J]. Laser and Particle Beams, 2001, 19(4): 579-595. doi: 10.1017/S026303460119405X
    [22] 刘红杰. 超强超短脉冲激光与团簇相互作用实验研究[D]. 北京: 中国工程物理研究院, 2007

    Liu Hongjie. Ultra-short ultra-intense laser cluster interaction[D]. Beijing: China Academy of Engineering Physics, 2007
    [23] 周光坰, 严宗毅, 许世雄, 等. 流体力学[M]. 2版. 北京: 高等教育出版社, 2000

    Zhou Guangjiong, Yan Zongyi, Xu Shixiong, et al. Fluid mechanics[M]. 2nd ed. Beijing: Higher Education Press, 2000
  • 加载中
图(4)
计量
  • 文章访问数:  83
  • HTML全文浏览量:  43
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-24
  • 修回日期:  2025-03-28
  • 录用日期:  2025-03-28
  • 网络出版日期:  2025-04-01
  • 刊出日期:  2025-04-15

目录

    /

    返回文章
    返回