Development of dual front-stage voltage fast pulsed power supply
-
摘要: 针对强流重离子加速器装置(HIAF)离子源束流快速切换需求,设计并研制了一台快切束脉冲电源。根据兼顾电流快速变化和平顶稳定度的要求,提出了基于高低压双前级电压快切换的实现方案,分析了电路工作原理,计算了关键参数,讨论了适应电压突变的控制方法。根据电源模块化原则研制了16 kW整机并在真实磁铁负载进行了测试。结果表明,电源在13 mH电感上输出570 A,误差小于±1×10−4,重复频率3 Hz,上升下降时间小于30 ms,平顶900 ms内可调,电源设计方案合理可行。Abstract: A fast pulsed power supply is developed to meet the requirements of High Intensity heavy-ion Accelerator Facility (HIAF) ion source. Based on front-stage voltage fast switching method, we proposed a circuit topology ensuring fast rising of current and flat top stability. In this paper the circuit is analyzed, the essential parameters of the circuit are calculated, and the control method is established for adapting abruptly-changed voltage. A 16 kW power supply based on the principle of modular manufacturing was tested on real magnet load. The results show the value of flat top current reaches 570 A, the error is less than ±1×10−4, the repetition frequency reaches 3 Hz, the rise time and fall time is less than 30 ms, the flat top time can be set within 900 ms.
-
Key words:
- fast switching /
- pulsed power supply /
- front-stage voltage /
- abrupt-changed /
- modularized
-
表 1 HIAF ECR 90度磁铁切束电源设计指标
Table 1. Specifications of HIAF ECR 90° magnet power supply
maximum
current/Arise
time/msflat top
time/msfall
time/msflat top
errorfrequency/
HzDC output
power/kWload resistance/
mΩload inductance/
mH570 <30 100~900 <30 <±1×10−4 <3 <16 48.8 13 表 2 设计指标与测试结果对比
Table 2. Comparative analysis of power supply parameters
maximum current/A rise time/ms flat top time/ms fall time/ms flat top error frequency/Hz DC output power/kW design 570 <30 100~900 <30 <±1×10−4 <3 <16 test result 570 25.4 100~200 21.8 <±9.26×10−5 1~3 <15.8 -
[1] 肖国青, 徐瑚珊, 王思成. HIAF及CiADS项目进展与展望[J]. 原子核物理评论, 2017, 34(3):275-283 doi: 10.11804/NuclPhysRev.34.03.275Xiao Guoqing, Xu Hushan, Wang Sicheng. HIAF and CiADS national research facilities: progress and prospect[J]. Nuclear Physics Review, 2017, 34(3): 275-283 doi: 10.11804/NuclPhysRev.34.03.275 [2] 高大庆, 周忠祖, 吴凤军, 等. 强流重离子加速器装置电源预研及进展[J]. 原子能科学技术, 2019, 53(10):2048-2054 doi: 10.7538/yzk.2019.53.10.2048Gao Daqing, Zhou Zhongzu, Wu Fengjun, et al. R&D progress of HIAF power supply system[J]. Atomic Energy Science and Technology, 2019, 53(10): 2048-2054 doi: 10.7538/yzk.2019.53.10.2048 [3] 陈锦晖, 王磊, 施华, 等. HEPS在轴注入冲击器系统及快脉冲电源样机研制[J]. 强激光与粒子束, 2019, 31:040017 doi: 10.11884/HPLPB201931.190007Chen Jinhui, Wang Lei, Shi Hua, et al. Application of fast pulsed power supply to high energy photon source[J]. High Power Laser and Particle Beams, 2019, 31: 040017 doi: 10.11884/HPLPB201931.190007 [4] 王冠文, 陈锦晖, 霍丽华, 等. HEPS增强器凸轨磁铁脉冲电源的设计与实现[J]. 强激光与粒子束, 2024, 36:025014 doi: 10.11884/HPLPB202436.230195Wang Guanwen, Chen Jinhui, Huo Lihua, et al. Design and implementation of HEPS booster bumper pulser[J]. High Power Laser and Particle Beams, 2024, 36: 025014 doi: 10.11884/HPLPB202436.230195 [5] 缪亚运, 谷鸣, 陈志豪, 等. 质子治疗装置脉冲电源研制[J]. 核技术, 2016, 39:040401 doi: 10.11889/j.0253-3219.2016.hjs.39.040401Miao Yayun, Gu Ming, Chen Zhihao, et al. Development of pulsed power supply in proton therapy[J]. Nuclear Techniques, 2016, 39: 040401 doi: 10.11889/j.0253-3219.2016.hjs.39.040401 [6] 尚雷, 尚风雷, 孙振彪, 等. 先进同步辐射光源特种电源概述[J]. 强激光与粒子束, 2019, 31:040002 doi: 10.11884/HPLPB201931.190044Shang Lei, Shang Fenglei, Sun Zhenbiao, et al. Overview of special power supplies for advanced synchrotron radiation source[J]. High Power Laser and Particle Beams, 2019, 31: 040002 doi: 10.11884/HPLPB201931.190044 [7] Takayanagi T, Ueno T, Togashi T, et al. Measurement results of the characteristic of the pulse power supply for the injection bump system in J-PARC 3-GeV RCS[C]//Proceedings of PAC09. 2009: TU6RFP083. [8] Takayanagi T, Hayashi N, Ueno T, et al. New injection bump power supply of the J-PARC RCS[C]//Proceedings of IPAC2015. 2015: 2908-2910. [9] Takayanagi T, Hayashi N, Kinsho M, et al. Design and preliminary performance of the new injection shift bump power supply at the J-PARC 3-GeV RCS[J]. IEEE Transactions on applied superconductivity, 2014, 24: 0503504. [10] 孙瑞泽, 陈万军, 刘超, 等. 压控型脉冲功率半导体器件技术及应用[J]. 强激光与粒子束, 2024, 36:095001 doi: 10.11884/HPLPB202436.240120Sun Ruize, Chen Wanjun, Liu Chao, et al. Technology and application of the voltage-controlled pulse power semiconductor devices[J]. High Power Laser and Particle Beams, 2024, 36: 095001 doi: 10.11884/HPLPB202436.240120 [11] Dai Tianli, Zhou Chao, Qin Jinggang, et al. The design of power supply for HF MRI superconducting magnet[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 978: 164344. doi: 10.1016/j.nima.2020.164344 [12] Shao Zhuoxia, Liu Peng, Zhang Haiyan, et al. Research on a multilevel corrector magnet power supply based on a buck cascade circuit[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 93: 163083. [13] Shen Li, Chi Yunlong, Huang Chuan. The pulsed power supply using IGBT topology for CSNS injection system bump magnet[C]//Proceedings of 2007 IEEE Particle Accelerator Conference. 2007: 2140-2142. [14] Park K H, Jung Y G, Kim D E, et al. The magnet power supply for PAL-XFEL[C]//Proceedings of the 5th International Particle Accelerator Conference IPAC2014. 2014: 504-507. [15] Novello L, Baulaigue O, Coletti A, et al. Overview of the new magnet power supply systems of JT-60SA procured by EU[J]. Fusion Engineering and Design, 2015, 98/99: 1122-1126. doi: 10.1016/j.fusengdes.2015.06.014 -