Research on pulse electric explosion synergistic rock breaking technology
-
摘要: 基于电磁能装备的电爆破在基坑工程中有巨大应用前景。提出了基于脉冲电源-电爆炸负载阵列的协同破岩技术,通过多应力波叠加实现大体积硬岩可控电爆破。分析了电爆炸过程中过电压产生机理以及多阵列协同过程中的过电压传递特性,提出了强流开关的过电压抑制方法。分析了单电爆炸负载与阵列协同破岩的作用效果,双电爆炸负载阵列单位体积破岩能耗为单电爆炸负载的38%,表明电爆炸负载阵列协同可有效实现大体积硬岩的可控电爆破。Abstract: Electric blasting based on electromagnetic energy equipment has great application prospects in foundation pit engineering. This article proposes the synergistic rock breaking technology based on pulse power supply and electric explosion load arrays, which achieves controllable electric blasting of large volume hard rock through the superposition of multiple shock waves. The article analyzes the mechanism of overvoltage in the process of electric explosion and the mechanism of overvoltage conduction in the multi-array collaborative process, and proposes the overvoltage suppression method. It compares the rock breaking effects of single pulse power supply and multi-array and the specific energy consumption of the dual load array is 38% of a single load for rock breaking, which indicates the electric explosion load array can effectively achieve controllable electric blasting of large volume hard rocks.
-
Key words:
- electric blasting /
- multi-array collaboration /
- overvoltage /
- large volume hard rock
-
表 1 不同条件下岩石破碎效果
Table 1. Rock crushing effect under different conditions
n U/kV S/mm E/kJ V/m3 EV/(kJ·m−3) 1 3 100 42.6 \ \ 1 4 100 75.8 0.051 1486 1 4 300 75.8 0.095 798 1 4 500 75.8 \ \ 2 4 300 151.5 0.5 303 -
[1] Shi Jiangwei, Ng C W W, Chen Yonghui. Three-dimensional numerical parametric study of the influence of basement excavation on existing tunnel[J]. Computers and Geotechnics, 2015, 63: 146-158. doi: 10.1016/j.compgeo.2014.09.002 [2] 郑刚, 曾超峰. 基坑开挖前潜水降水引起的地下连续墙侧移研究[J]. 岩土工程学报, 2013, 35(12):2153-2163Zheng Gang, Zeng Chaofeng. Lateral displacement of diaphragm wall by dewatering of phreatic water before excavation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2153-2163 [3] Wang Xiaodong, Li Ningjing, Du Jiaxu, et al. Concrete crushing based on the high-voltage pulse discharge technology[J]. Journal of Building Engineering, 2021, 41: 102366. doi: 10.1016/j.jobe.2021.102366 [4] 徐尤来, 刘毅, 黄仕杰, 等. 高电压脉冲放电破岩系统建模分析[J]. 真空科学与技术学报, 2023, 43(4):298-304Xu Youlai, Liu Yi, Huang Shijie, et al. Simulation of high voltage pulse rock breaking system[J]. Chinese Journal of Vacuum Science and Technology, 2023, 43(4): 298-304 [5] Huang Shijie, Liu Yi, Zhao Yong, et al. Stress wave analysis of high-voltage pulse discharge rock fragmentation based on plasma channel impedance model[J]. Plasma Science and Technology, 2023, 25: 065502. doi: 10.1088/2058-6272/acb136 [6] Zhao Yong, Liu Yi, Xu Youlai, et al. The plasma path development model (PPDM) in rocks during rock breaking by high-voltage pulse discharge[J]. Current Applied Physics, 2024, 59: 136-152. doi: 10.1016/j.cap.2024.01.004 [7] Zhu Xiaohua, Chen Mengqiu, Liu Weiji, et al. The fragmentation mechanism of heterogeneous granite by high-voltage electrical pulses[J]. Rock Mechanics and Rock Engineering, 2022, 55(7): 4351-4372. doi: 10.1007/s00603-022-02874-z [8] He Xin, Wang Xiaohui, Yang Siqi, et al. Study on key factors and influence law of structural design of high-voltage electro-pulse bit[J]. Geoenergy Science and Engineering, 2023, 227: 211868. doi: 10.1016/j.geoen.2023.211868 [9] Rao Pingping, Feng Weikang, Ouyang Peihao, et al. Formation of plasma channel under high-voltage electric pulse and simulation of rock-breaking process[J]. Physica Scripta, 2024, 99: 015604. doi: 10.1088/1402-4896/ad1239 [10] Liu Weiji, Hu Hai, Zhu Xiaohua. The rock breaking mechanism of a combined high-voltage electric impulse-PDC bit drilling technology[J]. Geothermics, 2023, 111: 102723. doi: 10.1016/j.geothermics.2023.102723 [11] Kozlova N V, Egorova M S, Safrygin M Y. Evaluation and improvement of economic efficiency in the sphere of bore-hole drilling methods[J]. SHS Web of Conferences, 2016, 28: 01126. doi: 10.1051/shsconf/20162801126 [12] Zhao Yong, Liu Yi, Cheng Jin, et al. Prediction of plasma path and analysis of axial fracturing properties in rock fragmentation by high-voltage pulsed discharge (RHPD)[J]. Journal of Physics D: Applied Physics, 2024, 57: 325502. doi: 10.1088/1361-6463/ad44a1 [13] Hu Yujia, Shi Huantong, Li Tuan, et al. Underwater shock wave generated by exploding wire ignited energetic materials and its applications in reservoir stimulation[J]. IEEE Transactions on Plasma Science, 2022, 50(9): 2520-2527. doi: 10.1109/TPS.2022.3175485 [14] Wang Xiaodong, Li Ningjing, Wang Wenqi. Experimental study on crushing of concrete slabs by high-voltage pulse discharge[J]. Construction and Building Materials, 2023, 401: 132951. doi: 10.1016/j.conbuildmat.2023.132951 [15] 付荣耀, 周健, 孙鹞鸿, 等. 无围压下高电压脉冲放电在岩石压裂中的应用[J]. 高电压技术, 2015, 41(12):4055-4059Fu Rongyao, Zhou Jian, Sun Yaohong, et al. Application of high voltage pulse discharge in rock fracturing without confining pressure[J]. High Voltage Engineering, 2015, 41(12): 4055-4059 [16] Liu Yi, Ren Yijia, Liu Siwei, et al. Comparison and analysis of shockwave characteristics between underwater pulsed discharge and metal wire explosion[J]. Physics of Plasmas, 2020, 27: 033503. doi: 10.1063/1.5140829 [17] Zhou Haibin, Han Ruoyu, Liu Qiaojue, et al. Generation of electrohydraulic shock waves by plasma-ignited energetic materials: II. Influence of wire configuration and stored energy[J]. IEEE Transactions on Plasma Science, 2015, 43(12): 4009-4016. doi: 10.1109/TPS.2015.2469593 [18] Chai Yifan, Timoshkin I V, Wilson M P, et al. Free and wire-guided spark discharges in water: pre-breakdown energy losses and generated pressure impulses[J]. Energies, 2023, 16: 4932. doi: 10.3390/en16134932 [19] 王兆寒, 张晨晖, 于航, 等. 铜丝电爆炸载荷下红砂岩破裂行为实验[J]. 有色金属(矿山部分), 2022, 74(3):36-41Wang Zhaohan, Zhang Chenhui, Yu Hang, et al. Fracture behavior of red sandstone under copper wire electric explosion[J]. Nonferrous Metals (Mining Section), 2022, 74(3): 36-41 [20] 闫小兵, 王秀龙, 贺能, 等. 金属丝电爆炸的电流波形特征及其破岩效果研究[J]. 中国矿业, 2024, 33(6):210-217 doi: 10.12075/j.issn.1004-4051.20230528Yan Xiaobing, Wang Xiulong, He Neng, et al. Current waveform characteristics and rock-breaking effect of metal wire explosion[J]. China Mining Magazine, 2024, 33(6): 210-217 doi: 10.12075/j.issn.1004-4051.20230528 [21] Otsuka M, Itoh S. Destruction of concrete block using underwater shock wave generated by electric discharge[C]//Proceedings of ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference. 2006. [22] Lin Xinxin, Yang Fei, Liu Youwei, et al. Research on the crushing of reinforced concrete two-way slabs by pulse power discharge technology[J]. Buildings, 2024, 14: 1222. doi: 10.3390/buildings14051222 [23] Voitenko N V, Yudin A S, Kuznetsova N S. Evaluation of energy characteristics of high voltage equipment for electro-blasting destruction of rocks and concrete[J]. Journal of Physics: Conference Series, 2015, 652: 012011. doi: 10.1088/1742-6596/652/1/012011 [24] Uenishi K, Shigeno N, Sakaguchi S, et al. Controlled disintegration of reinforced concrete blocks based on wave and fracture dynamics[J]. Procedia Structural Integrity, 2016, 2: 350-357. doi: 10.1016/j.prostr.2016.06.045 [25] Grinenko A, Efimov S, Fedotov A, et al. Addressing the problem of plasma shell formation around an exploding wire in water[J]. Physics of Plasmas, 2006, 13: 052703. doi: 10.1063/1.2202207 [26] 韩若愚, 李柳霞, 钱盾, 等. 液体中金属丝电爆炸的研究现状与展望[J]. 高电压技术, 2021, 47(3):766-777Han Ruoyu, Li Liuxia, Qian Dun, et al. Exploding metal wires in liquids: current situation and prospects[J]. High Voltage Engineering, 2021, 47(3): 766-777 [27] 石桓通, 范云飞, 阴国锋, 等. 不同负载尺寸下水中铜丝电爆炸特性的实验研究[J]. 高电压技术, 2021, 47(7):2599-2606Shi Huantong, Fan Yunfei, Yin Guofeng, et al. Experimental study on underwater electrical explosion of copper wires with varied diameter and length[J]. High Voltage Engineering, 2021, 47(7): 2599-2606 [28] 张荣立, 李铎. 采矿工程设计手册[M]. 北京: 煤炭工业出版社, 2003: 103-111Zhang Rongli, Li Duo. Mining engineering design manual[M]. Beijing: China Coal Industry Publishing House, 2003: 103-111 [29] 宋守志. 固体介质中的应力波[M]. 北京: 煤炭工业出版社, 1989: 37-53Song Shouzhi. Stress waves in solid media[M]. Beijing: China Coal Industry Publishing House, 1989: 37-53 [30] 林尚剑, 王金相, 马腾, 等. 水下多点爆炸冲击波叠加效应研究[J]. 兵工学报, 2020, 41(s1):39-45Lin Shangjian, Wang Jinxiang, Ma Teng, et al. Superimposed effect of shock waves of underwater explosion[J]. Acta Armamentarii, 2020, 41(s1): 39-45 [31] 孟闻远, 郭军伟, 郭颍奎, 等. 两点爆炸冲击波对冰的破坏效应的仿真分析[J]. 华北水利水电大学学报(自然科学版), 2014, 35(1):22-25Meng Wenyuan, Guo Junwei, Guo Yingkui, et al. Simulation and analysis of damage effect of double explosions shock wave on the ice[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2014, 35(1): 22-25 [32] 吴国群, 张明晓, 弓启祥, 等. 水下爆炸冲击波相互作用的研究[J]. 煤矿爆破, 2011(2):12-15Wu Guoqun, Zhang Mingxiao, Gong Qixiang, et al. Study on the interaction of the shock waves in underwater explosions[J]. Coal Mine Blasting, 2011(2): 12-15 [33] Yudin A S, Voitenko N V, Kuznetsova N S. Two-section pulse current generator for concrete and rocks destruction by splitting off[J]. IEEE Transactions on Plasma Science, 2017, 45(11): 3042-3045. doi: 10.1109/TPS.2017.2761441 [34] Tkachenko S I, Pikuz S A, Romanova V M, et al. Overvoltage pulse development upon electrical explosion of thin wires[J]. Journal of Physics D: Applied Physics, 2007, 40(6): 1742-1750. doi: 10.1088/0022-3727/40/6/022 [35] 马中高, 朱立华, 张卫华, 等. 雷州半岛南部玄武岩岩石物理特征[J]. 石油学报, 2020, 41(6):702-710 doi: 10.7623/syxb202006005Ma Zhonggao, Zhu Lihua, Zhang Weihua, et al. Petrophysical characteristics of basalt in the southern Leizhou peninsula[J]. Acta Petrolei Sinica, 2020, 41(6): 702-710 doi: 10.7623/syxb202006005 [36] 周洪福, 聂德新, 王春山. 水电工程坝基玄武岩体波速与变形模量关系[J]. 地球科学(中国地质大学学报), 2015, 40(11):1904-1912 doi: 10.3799/dqkx.2015.171Zhou Hongfu, Nie Dexin, Wang Chunshan. Correlation between wave velocity and deformation modulus of basalt masses as dam foundation in hydropower projects[J]. Earth Science (Journal of China University of Geosciences), 2015, 40(11): 1904-1912 doi: 10.3799/dqkx.2015.171 [37] Biela J, Marxgut C, Bortis D, et al. Solid state modulator for plasma channel drilling[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(4): 1093-1099. doi: 10.1109/TDEI.2009.5211860 [38] Ushakov V Y, Vajov V F, Zinoviev N T. Electro-discharge technology for drilling wells and concrete destruction[M]. Cham: Springer, 2019: 17-19, 55-61. [39] Fujita T, Yoshimi I, Shibayama A, et al. Crushing and liberation of materials by electrical disintegration[J]. The European Journal of Mineral Processing and Environmental Protection, 2001, 1(2): 113-122. [40] Kou S Q, Rustan A. Burden related to blasthole diameter in rock blasting[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1992, 29(6): 543-553. [41] 张晓春, 杨挺青, 缪协兴. 岩石裂纹演化及其力学特性的研究进展[J]. 力学进展, 1999, 29(1):97-104 doi: 10.3321/j.issn:1000-0992.1999.01.009Zhang Xiaochun, Yang Tingqing, Miao Xiexing. The new advances of cracks development and mechanical properties of rock[J]. Advances in Mechanics, 1999, 29(1): 97-104 doi: 10.3321/j.issn:1000-0992.1999.01.009 -