留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and optimization of the quadrupole and sextupole magnets for SILF storage ring

Zhu Jiawu Zhang Miao Wang Yong

朱加伍, 张淼, 王勇. 深圳产业光源储存环四六极磁铁的设计和优化[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240352
引用本文: 朱加伍, 张淼, 王勇. 深圳产业光源储存环四六极磁铁的设计和优化[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240352
Zhu Jiawu, Zhang Miao, Wang Yong. Design and optimization of the quadrupole and sextupole magnets for SILF storage ring[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240352
Citation: Zhu Jiawu, Zhang Miao, Wang Yong. Design and optimization of the quadrupole and sextupole magnets for SILF storage ring[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240352

深圳产业光源储存环四六极磁铁的设计和优化

doi: 10.11884/HPLPB202537.240352
详细信息
  • 中图分类号: TN242

Design and optimization of the quadrupole and sextupole magnets for SILF storage ring

More Information
  • 摘要: 相较于第三代同步辐射光源,基于多弯铁消色散(Multi-Bend Achromat, MBA)磁聚焦结构的第四代同步辐射光源可以进一步降低束流发射度达1~2个数量级,从而进一步提升光源亮度和相干性。深圳产业光源(Shenzhen Innovation Light-source Facility, SILF)储存环的周长为696 m,束流设计流强为200~300 mA,发射度约84 pm·rad。根据目前储存环物理设计,共有11种四极磁铁、4种二四极组合功能铁和3种六极磁铁。由于物理设计对磁铁的积分磁场均匀性提出了更高要求,开发了基于Opera-2D®的四六极磁铁磁极面优化程序,该优化程序同时考虑了磁铁的端部磁场效应,从而大大提高了优化效率。首先介绍了深圳产业光源四极磁铁、二四极组合功能铁及六极磁铁的初步设计,然后详细介绍了基于Opera-2D®的四六极磁铁磁极面的优化方法。
  • Figure  1.  Magnets layout of H7BA cell with 2.0 T SuperBend (type I) and 3.2 T SuperBend (type II)

    Figure  2.  The QF1 By integral field homogeneity in GFR (left), the optimized pole shape (middle) and the 3D mechanical design (right)

    Figure  3.  The QB4 Bx and By integral field homogeneity in GFR and the 3D mechanical design (right)

    Figure  4.  The SF1 Bx and By integral field homogeneity in GFR and the optimized pole shape (right)

    Figure  5.  The nested correction coils in sextupole magnet and the current directions (left) and the 3D mechanical design (right)

    Figure  6.  The integrated horizontal (left) and vertical (right) correction fields

    Figure  7.  The initial pole outline definition by input the points coordinates (left) and explanation of the substituted smooth curve (right)

    Figure  8.  The chart flow for quadrupole and sextupole magnets pole shape optimization

    Figure  9.  Fitting of the ratio between 2D and 3D fields of a quadrupole magnet

    Table  1.   The basic design parameters of the quadrupoles

    magnets in
    groups
    field gradient/
    (T/m)
    effective magnetic
    length/cm
    current/A turn number
    per winding
    conductor
    size/(mm×mm)
    power/kW water flow
    rate/(L/min)
    QF1 36.23 25.0 115.4 32 7×7 0.69 0.774
    QD1/QF3/QD3/QD5 −36.2/34.8/
    −41.9/−37.0
    18.0 133.4 32 7×7 0.77 0.852
    QD2/QF2 −33.1/44.56 12.0 141.9 32 7×7 0.73 0.95
    QF4/QF5 51.5/48.0 35.0 163.9 32 8×8 1.39 1.50
    QD4 −39.1 20.0 124.5 32 7×7 0.71 0.83
    QD6 −28.0 16.0 89.1 32 7×7 0.33 0.88
    下载: 导出CSV

    Table  2.   The integrated field harmonics of the quadrupoles

    magnets in groups B6/B2 B10/B2 B14/B2 B18/B2
    QF1 −9.98E-6 1.68E-5 −8.79E-6 −4.65E-7
    QD1/QF3/QD3/QD5 −2.26E-5 2.84E-5 −1.21E-5 −5.09E-7
    QD2/QF2 −3.95E-6 1.01E-5 −1.16E-5 −3.20E-7
    QF4/QF5 −3.52E-5 2.21E-5 −8.80E-6 −5.10E-7
    QD4 −8.69E-6 1.21E-5 −9.44E-6 −2.63E-7
    QD6 −3.35E-5 2.68E-5 −1.10E-5 2.07E-7
    下载: 导出CSV

    Table  3.   The basic design parameters of Q-bend and sextupole magnets

    magnets field
    strength
    dipole
    field/T
    magnetic
    length/cm
    current/A turn number
    per winding
    conductor
    size/(mm×mm)
    power/kW water flow
    rate/(L/min)
    QB1/QB3 −26.87/-29.08 T/m 0.3576/
    0.3452
    64.5/65.0 265.6/
    287.4
    32 8×8 5.78/6.81 2.03/2.02
    QB2/QB4 51.43/51.16 T/m 0.2766/
    -0.2876
    45.0 237.2/
    236.1
    36 8×8 4.94/4.89 1.95
    SF1/SD1/SD2 1900.4/−1853.1/
    1532.8 T/m2
    / 15.0 88.0 12 6×6 0.2 0.96
    下载: 导出CSV

    Table  4.   The integrated field harmonics of Q-bend and sextupole magnets

    magnets B6/B2, B9/B3 B10/B2, B15/B3 B14/B2, B21/B3 B18/B2, B27/B3
    QB1 −2.45E-5 1.32E-4 −7.28E-5 −2.0E-5
    QB2 −7.02E-5 4.82E-5 −2.50E-5 −3.89E-5
    QB3 −5.14E-5 1.32E-4 −7.26E-5 −1.98E-5
    QB4 −6.93E-5 4.82E-5 −2.50E-5 −3.89E-6
    SF1/SD1/SD2 1.07E-5 −7.52E-6 1.44E-6 −8.49E-6
    下载: 导出CSV
  • [1] Shin S. New era of synchrotron radiation: fourth-generation storage ring[J]. AAPPS Bulletin, 2021, 31: 21. doi: 10.1007/s43673-021-00021-4
    [2] He Tao, Sun Zhenbiao, Zhang Tong, et al. Physics design of the Shenzhen innovation light source storage ring[J]. Journal of Instrumentation, 2023, 18: P05037. doi: 10.1088/1748-0221/18/05/P05037
    [3] Halbach K, Holsinger R. Poisson user manual[R]. Berkeley: Lawrence Berkeley Laboratory, 1972.
    [4] Russenschuck S, Aleksa M, Bazan M, et al. Integrated design of superconducting magnets with the CERN field computation program ROXIE[C]//Proceedings of the 6th International Computational Accelerator Physics Conference. 2000.
    [5] Wang Chunguang, Zhang Miao, Liu Guiming, et al. Magnet designs for the storage ring of the Shenzhen innovation light-source facility[J]. IEEE Transactions on Applied Superconductivity, 2024, 34: 4902304.
    [6] Ying Chuntong. Transport theory and application of gas[M]. Beijing: Tsinghua University Press, 1990.
    [7] Russenschuck S. Field computation for accelerator magnets: analytical and numerical methods for electromagnetic design and optimization[M]. Weinheim: Wiley-VCH, 2010.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  12
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-08
  • 修回日期:  2025-05-20
  • 录用日期:  2025-05-13
  • 网络出版日期:  2025-06-05

目录

    /

    返回文章
    返回