Experimient and optimization of laser cavity in high-recovity pressure chemical laser
-
摘要: 利用已有的激光器试车台进行了不同质量流率的DF激光器恢复压力试验。当质量流率达到2.475 g·s−1·cm−2时,注入副气流D2及He后激射腔压力异常升高,激射腔内部存在热堵。建立DF激光器激射腔与扩压器仿真分析模型,结合DF激光器反应机理,对有无热反应的激射腔及扩压器通道的流场进行了仿真分析。分析结果显示,不考虑热反应的激射腔内部流场通畅、考虑真实气体反应放热效应时,激射腔内静压迅速抬升,出现热堵,且热堵现象集中在激射腔入口段,与试验结果吻合。根据仿真分析结果,优化了激射腔设计,进行了DF激光器试验研究。结果显示,优化后的激射腔热堵问题得到解决,质量流率2.475 g·s−1·cm−2时,激光器实现了背压22 kPa直排。Abstract: To research the recoverey pressure of DF laser, experiments were carried out with different mass flowrate on a test bench. Thermal blockage was discovered when the mass flowrate reached 2.475 g·s−1·cm−2. The simulation model of laser cavity and diffuser was established, and the flow fluid was obtained. The simulation showed that the cavity’s pressure rose up quickly when the mass flowrate was 2.475 g·s−1·cm−2, which is coincident with the experiment. The design was optimized based on the result of the simulation and the corresponding experiment was proceeded. The result shows that the thermal blockage was solved with the optimized laser cavity. The laser’s recovery pressure reached 22 kPa with mass flowrate 2.475 g·s−1·cm−2.
-
Key words:
- laser cavity /
- massflow rate /
- thermal blockage /
- diffuser
-
表 1 压力测点坐标及不同质量流率测量值
Table 1. Coordinate and value of the laser cavity’s pressure point
number of the
test pointdistance between the pressure point
and inlet of the laser cavity/mmpressure/kPa with mass flowrate 1.65 g·s−1·cm−2 with mass flowrate 2.475 g·s−1·cm−2 1 6 0.9 2.5 2 58 2.3 4.1 3 138 4.3 7.3 4 347 4.3 5.2 5 607 4.5 6.8 表 2 激射腔仿真参数
Table 2. Simulation parameters of the laser cavity
mass flux/(g·s−1·cm−2) static pressure/kPa total temperature/K background
pressure/kPawithout heat with heat without heat with heat 2.475 0.9 2.5 800 900 3 表 3 型面优化前后激射腔测点压力值比较
Table 3. Contrast of the cavity’s pressure after the optimization
number of the test point pressure/kPa before the optimization after the optimization 1 2.5 1.3 2 4.1 2.9 3 7.3 3.9 4 5.2 5.4 5 6.8 6.2 -
[1] 袁圣付, 刘文广, 华卫红, 等. HYLTE与TRIP喷管在大功率氟化氘激光器中的应用对比分析[J]. 国防科技大学学报, 2010, 32(6):100-106 doi: 10.3969/j.issn.1001-2486.2010.06.018Yuan Shengfu, Liu Wenguang, Hua Weihong, et al. Analysis and comparative study of employing HYLTE and TRIP nozzles in high power DF laser[J]. Journal of National University of Defense Technology, 2010, 32(6): 100-106 doi: 10.3969/j.issn.1001-2486.2010.06.018 [2] 徐万武. 高性能、大压缩比化学激光器压力恢复系统研究[D]. 长沙: 中国人民解放军国防科学技术大学, 2003Xu Wanwu. Study of high performance, high compression ratio pressure recovery system for chemical laser[D]. Changsha: National University of Defense Technology, 2003 [3] 王植杰, 郭建增, 常磊, 等. 高恢复压力氟化氘增益发生器技术研究[J]. 强激光与粒子束, 2018, 30:111004 doi: 10.11884/HPLPB201830.180013Wang Zhijie, Guo Jianzeng, Chang Lei, et al. High recovered pressure gain generator assembly in deuterium fluoride lasers[J]. High Power Laser and Particle Beams, 2018, 30: 111004 doi: 10.11884/HPLPB201830.180013 [4] 李金雪, 王杰, 颜飞雪, 等. DF化学激光器扩压器流场仿真及优化[J]. 强激光与粒子束, 2018, 30:101002 doi: 10.11884/HPLPB201830.180113Li Jinxue, Wang Jie, Yan Feixue, et al. Simulation and optimization of DF chemical lasers' diffuser[J]. High Power Laser and Particle Beams, 2018, 30: 101002 doi: 10.11884/HPLPB201830.180113 [5] 李金雪, 任晓明, 郭洲, 等. 化学激光器扩压器启动特性研究[J]. 强激光与粒子束, 2022, 34:031008 doi: 10.11884/HPLPB202234.210273Li Jinxue, Ren Xiaoming, Guo Zhou, et al. Study of diffuser’s start up property in chemical lasers[J]. High Power Laser and Particle Beams, 2022, 34: 031008 doi: 10.11884/HPLPB202234.210273 [6] 李烨, 范晓樯, 丁猛. 超声速扩压器中激波串结构的数值模拟[J]. 国防科技大学学报, 2002, 24(1):18-21 doi: 10.3969/j.issn.1001-2486.2002.01.005Li Ye, Fan Xiaoqiang, Ding Meng. Numerical simulatiom of the shock train structure in the supersonic diffuser[J]. Journal of National University of Defense Technology, 2002, 24(1): 18-21 doi: 10.3969/j.issn.1001-2486.2002.01.005 [7] 童华, 孙启志, 张绍武. 高超声速风洞扩压器试验研究与分析[J]. 实验流体力学, 2014, 28(3):78-81,103 doi: 10.11729/syltlx20120201Tong Hua, Sun Qizhi, Zhang Shaowu. Investigation and analyse on the diffuser of hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(3): 78-81,103 doi: 10.11729/syltlx20120201 [8] 蔡光明, 刘军, 王永振, 等. 二次喉道扩压器对COIL的影响实验[J]. 强激光与粒子束, 2005, 17(12):1807-1811Cai Guangming, Liu Jun, Wang Yongzhen, et al. Experimental study on influence of secondary-throat diffuser on COIL[J]. High Power Laser and Particle Beams, 2005, 17(12): 1807-1811 [9] 蔡光明, 刘军, 宋影松, 等. 竖直隔板对COIL超扩段流场影响实验研究[J]. 强激光与粒子束, 2003, 15(8):729-723Cai Guangming, Liu Jun, Song Yingsong, et al. Experimental research of the influence of the vertical vane on the flow-field of COIL diffuser[J]. High Power Laser and Particle Beams, 2003, 15(8): 729-723 [10] 黄知龙, 张国彪, 耿子海, 等. 氧碘化学激光器直线分段扩开型扩压器实验研究[J]. 强激光与粒子束, 2011, 23(5):1211-1214 doi: 10.3788/HPLPB20112305.1211Huang Zhilong, Zhang Guobiao, Geng Zihai, et al. Performance of line-divergence subsection supersonic diffuser for COIL[J]. High Power Lase and Particle Beams, 2011, 23(5): 1211-1214 doi: 10.3788/HPLPB20112305.1211 [11] 陈吉明, 任玉新. 压力恢复系统扩压器激波串现象的数值模拟[J]. 空气动力学学报, 2008, 26(3):304-309Chen Jiming, Ren Yuxin. Numerical simulation to the pseudo-shock of the supersonic diffuser in the pressure recovery system[J]. Acta Aerodynamica Sinica, 2008, 26(3): 304-309 [12] 陈吉明, 彭强, 廖达雄. 压力恢复系统扩压器性能初步研究[J]. 强激光与粒子束, 2007, 19(8):1266-1270Chen Jiming, Peng Qiang, Liao Daxiong. Performance of supersonic diffuser in pressure recovery system[J]. High Power Laser and Particle Beams, 2007, 19(8): 1266-1270 [13] 闫宝珠, 袁圣付, 陆启生. 直排型DF/HF化学激光器扩压器喉道最佳长度实验研究[J]. 强激光与粒子束, 2009, 21(3):331-334Yan Baozhu, Yuan Shengfu, Lu Qisheng. Experimental investigation on optimal length of diffuser throat in directly drained CW DF/HF chemical laser[J]. High Power Laser and Particle Beams, 2009, 21(3): 331-334 [14] 符澄, 彭强, 刘卫红, 等. 光腔与扩压器化学反应流场优化数值模拟[J]. 强激光与粒子束, 2015, 27:111009 doi: 10.11884/HPLPB201527.111009Fu Cheng, Peng Qiang, Liu Weihong, et al. Numerical simulation of chemical reaction flow optimization in cavity and diffuser[J]. High Power Laser and Particle Beams, 2015, 27: 111009 doi: 10.11884/HPLPB201527.111009 [15] 符澄, 彭强, 刘卫红, 等. 光腔与扩压器的一体化优化数值模拟[J]. 强激光与粒子束, 2014, 26:111003 doi: 10.3788/HPLPB20142611.111003Fu Cheng, Peng Qiang, Liu Weihong, et al. Integrative optimization numerical simulation of cavity and diffuser[J]. High Power Laser and Particle Beams, 2014, 26: 111003 doi: 10.3788/HPLPB20142611.111003 [16] 余真, 李守先, 陈栋泉. 喷管、光腔及压力恢复系统一体化设计[J]. 强激光与粒子束, 2007, 19(4):533-537Yu Zhen, Li Shouxian, Chen Dongquan. Integrative design of nozzle, cavity and pressure recovery system[J]. High Power Laser and Particle Beams, 2007, 19(4): 533-537 [17] Gross R W F, Bott J F. Handbook of chemical lasers[M]. Wiley-Interscience Publication, 1976. -