留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高恢复压力激光器激射腔仿真优化及试验

李金雪 魏士杰 邱雄飞 颜飞雪

李金雪, 魏士杰, 邱雄飞, 等. 高恢复压力激光器激射腔仿真优化及试验[J]. 强激光与粒子束, 2025, 37: 011002. doi: 10.11884/HPLPB202537.240354
引用本文: 李金雪, 魏士杰, 邱雄飞, 等. 高恢复压力激光器激射腔仿真优化及试验[J]. 强激光与粒子束, 2025, 37: 011002. doi: 10.11884/HPLPB202537.240354
Li Jinxue, Wei Shijie, Qiu Xiongfei, et al. Experimient and optimization of laser cavity in high-recovity pressure chemical laser[J]. High Power Laser and Particle Beams, 2025, 37: 011002. doi: 10.11884/HPLPB202537.240354
Citation: Li Jinxue, Wei Shijie, Qiu Xiongfei, et al. Experimient and optimization of laser cavity in high-recovity pressure chemical laser[J]. High Power Laser and Particle Beams, 2025, 37: 011002. doi: 10.11884/HPLPB202537.240354

高恢复压力激光器激射腔仿真优化及试验

doi: 10.11884/HPLPB202537.240354
详细信息
    作者简介:

    李金雪,ljxzyxzxg@163.com

  • 中图分类号: V228.7

Experimient and optimization of laser cavity in high-recovity pressure chemical laser

  • 摘要: 利用已有的激光器试车台进行了不同质量流率的DF激光器恢复压力试验。当质量流率达到2.475 g·s−1·cm−2时,注入副气流D2及He后激射腔压力异常升高,激射腔内部存在热堵。建立DF激光器激射腔与扩压器仿真分析模型,结合DF激光器反应机理,对有无热反应的激射腔及扩压器通道的流场进行了仿真分析。分析结果显示,不考虑热反应的激射腔内部流场通畅、考虑真实气体反应放热效应时,激射腔内静压迅速抬升,出现热堵,且热堵现象集中在激射腔入口段,与试验结果吻合。根据仿真分析结果,优化了激射腔设计,进行了DF激光器试验研究。结果显示,优化后的激射腔热堵问题得到解决,质量流率2.475 g·s−1·cm−2时,激光器实现了背压22 kPa直排。
  • 图  1  DF化学激光器试车台

    Figure  1.  DF chemical laser’s test bench

    图  2  激射腔仿真模型图

    Figure  2.  Laser cavity’s simulation model

    图  3  无放热反应激射腔不同截面马赫数云图

    Figure  3.  Ma contour of different planes without thermal reaction

    图  4  带放热反应激射腔不同截面马赫数云图

    Figure  4.  Ma contour of different planes with thermal reaction

    图  5  激射腔优化型面与原型面对比图

    Figure  5.  Optimization of laser cavity

    表  1  压力测点坐标及不同质量流率测量值

    Table  1.   Coordinate and value of the laser cavity’s pressure point

    number of the
    test point
    distance between the pressure point
    and inlet of the laser cavity/mm
    pressure/kPa
    with mass flowrate 1.65 g·s−1·cm−2 with mass flowrate 2.475 g·s−1·cm−2
    1 6 0.9 2.5
    2 58 2.3 4.1
    3 138 4.3 7.3
    4 347 4.3 5.2
    5 607 4.5 6.8
    下载: 导出CSV

    表  2  激射腔仿真参数

    Table  2.   Simulation parameters of the laser cavity

    mass flux/(g·s−1·cm−2)static pressure/kPatotal temperature/Kbackground
    pressure/kPa
    without heatwith heatwithout heatwith heat
    2.4750.92.58009003
    下载: 导出CSV

    表  3  型面优化前后激射腔测点压力值比较

    Table  3.   Contrast of the cavity’s pressure after the optimization

    number of the test point pressure/kPa
    before the optimization after the optimization
    1 2.5 1.3
    2 4.1 2.9
    3 7.3 3.9
    4 5.2 5.4
    5 6.8 6.2
    下载: 导出CSV
  • [1] 袁圣付, 刘文广, 华卫红, 等. HYLTE与TRIP喷管在大功率氟化氘激光器中的应用对比分析[J]. 国防科技大学学报, 2010, 32(6):100-106 doi: 10.3969/j.issn.1001-2486.2010.06.018

    Yuan Shengfu, Liu Wenguang, Hua Weihong, et al. Analysis and comparative study of employing HYLTE and TRIP nozzles in high power DF laser[J]. Journal of National University of Defense Technology, 2010, 32(6): 100-106 doi: 10.3969/j.issn.1001-2486.2010.06.018
    [2] 徐万武. 高性能、大压缩比化学激光器压力恢复系统研究[D]. 长沙: 中国人民解放军国防科学技术大学, 2003

    Xu Wanwu. Study of high performance, high compression ratio pressure recovery system for chemical laser[D]. Changsha: National University of Defense Technology, 2003
    [3] 王植杰, 郭建增, 常磊, 等. 高恢复压力氟化氘增益发生器技术研究[J]. 强激光与粒子束, 2018, 30:111004 doi: 10.11884/HPLPB201830.180013

    Wang Zhijie, Guo Jianzeng, Chang Lei, et al. High recovered pressure gain generator assembly in deuterium fluoride lasers[J]. High Power Laser and Particle Beams, 2018, 30: 111004 doi: 10.11884/HPLPB201830.180013
    [4] 李金雪, 王杰, 颜飞雪, 等. DF化学激光器扩压器流场仿真及优化[J]. 强激光与粒子束, 2018, 30:101002 doi: 10.11884/HPLPB201830.180113

    Li Jinxue, Wang Jie, Yan Feixue, et al. Simulation and optimization of DF chemical lasers' diffuser[J]. High Power Laser and Particle Beams, 2018, 30: 101002 doi: 10.11884/HPLPB201830.180113
    [5] 李金雪, 任晓明, 郭洲, 等. 化学激光器扩压器启动特性研究[J]. 强激光与粒子束, 2022, 34:031008 doi: 10.11884/HPLPB202234.210273

    Li Jinxue, Ren Xiaoming, Guo Zhou, et al. Study of diffuser’s start up property in chemical lasers[J]. High Power Laser and Particle Beams, 2022, 34: 031008 doi: 10.11884/HPLPB202234.210273
    [6] 李烨, 范晓樯, 丁猛. 超声速扩压器中激波串结构的数值模拟[J]. 国防科技大学学报, 2002, 24(1):18-21 doi: 10.3969/j.issn.1001-2486.2002.01.005

    Li Ye, Fan Xiaoqiang, Ding Meng. Numerical simulatiom of the shock train structure in the supersonic diffuser[J]. Journal of National University of Defense Technology, 2002, 24(1): 18-21 doi: 10.3969/j.issn.1001-2486.2002.01.005
    [7] 童华, 孙启志, 张绍武. 高超声速风洞扩压器试验研究与分析[J]. 实验流体力学, 2014, 28(3):78-81,103 doi: 10.11729/syltlx20120201

    Tong Hua, Sun Qizhi, Zhang Shaowu. Investigation and analyse on the diffuser of hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(3): 78-81,103 doi: 10.11729/syltlx20120201
    [8] 蔡光明, 刘军, 王永振, 等. 二次喉道扩压器对COIL的影响实验[J]. 强激光与粒子束, 2005, 17(12):1807-1811

    Cai Guangming, Liu Jun, Wang Yongzhen, et al. Experimental study on influence of secondary-throat diffuser on COIL[J]. High Power Laser and Particle Beams, 2005, 17(12): 1807-1811
    [9] 蔡光明, 刘军, 宋影松, 等. 竖直隔板对COIL超扩段流场影响实验研究[J]. 强激光与粒子束, 2003, 15(8):729-723

    Cai Guangming, Liu Jun, Song Yingsong, et al. Experimental research of the influence of the vertical vane on the flow-field of COIL diffuser[J]. High Power Laser and Particle Beams, 2003, 15(8): 729-723
    [10] 黄知龙, 张国彪, 耿子海, 等. 氧碘化学激光器直线分段扩开型扩压器实验研究[J]. 强激光与粒子束, 2011, 23(5):1211-1214 doi: 10.3788/HPLPB20112305.1211

    Huang Zhilong, Zhang Guobiao, Geng Zihai, et al. Performance of line-divergence subsection supersonic diffuser for COIL[J]. High Power Lase and Particle Beams, 2011, 23(5): 1211-1214 doi: 10.3788/HPLPB20112305.1211
    [11] 陈吉明, 任玉新. 压力恢复系统扩压器激波串现象的数值模拟[J]. 空气动力学学报, 2008, 26(3):304-309

    Chen Jiming, Ren Yuxin. Numerical simulation to the pseudo-shock of the supersonic diffuser in the pressure recovery system[J]. Acta Aerodynamica Sinica, 2008, 26(3): 304-309
    [12] 陈吉明, 彭强, 廖达雄. 压力恢复系统扩压器性能初步研究[J]. 强激光与粒子束, 2007, 19(8):1266-1270

    Chen Jiming, Peng Qiang, Liao Daxiong. Performance of supersonic diffuser in pressure recovery system[J]. High Power Laser and Particle Beams, 2007, 19(8): 1266-1270
    [13] 闫宝珠, 袁圣付, 陆启生. 直排型DF/HF化学激光器扩压器喉道最佳长度实验研究[J]. 强激光与粒子束, 2009, 21(3):331-334

    Yan Baozhu, Yuan Shengfu, Lu Qisheng. Experimental investigation on optimal length of diffuser throat in directly drained CW DF/HF chemical laser[J]. High Power Laser and Particle Beams, 2009, 21(3): 331-334
    [14] 符澄, 彭强, 刘卫红, 等. 光腔与扩压器化学反应流场优化数值模拟[J]. 强激光与粒子束, 2015, 27:111009 doi: 10.11884/HPLPB201527.111009

    Fu Cheng, Peng Qiang, Liu Weihong, et al. Numerical simulation of chemical reaction flow optimization in cavity and diffuser[J]. High Power Laser and Particle Beams, 2015, 27: 111009 doi: 10.11884/HPLPB201527.111009
    [15] 符澄, 彭强, 刘卫红, 等. 光腔与扩压器的一体化优化数值模拟[J]. 强激光与粒子束, 2014, 26:111003 doi: 10.3788/HPLPB20142611.111003

    Fu Cheng, Peng Qiang, Liu Weihong, et al. Integrative optimization numerical simulation of cavity and diffuser[J]. High Power Laser and Particle Beams, 2014, 26: 111003 doi: 10.3788/HPLPB20142611.111003
    [16] 余真, 李守先, 陈栋泉. 喷管、光腔及压力恢复系统一体化设计[J]. 强激光与粒子束, 2007, 19(4):533-537

    Yu Zhen, Li Shouxian, Chen Dongquan. Integrative design of nozzle, cavity and pressure recovery system[J]. High Power Laser and Particle Beams, 2007, 19(4): 533-537
    [17] Gross R W F, Bott J F. Handbook of chemical lasers[M]. Wiley-Interscience Publication, 1976.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  99
  • HTML全文浏览量:  36
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-10
  • 修回日期:  2024-12-19
  • 录用日期:  2024-12-19
  • 网络出版日期:  2025-01-02
  • 刊出日期:  2025-12-13

目录

    /

    返回文章
    返回