留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PCSS触发TSS阵列的高压纳秒开关设计及应用

张静 屈光辉 张琳 赵国强 张哲豪 刘丽娜 刘园园 李明奇

张静, 屈光辉, 张琳, 等. 基于PCSS触发TSS阵列的高压纳秒开关设计及应用[J]. 强激光与粒子束, 2025, 37: 055002. doi: 10.11884/HPLPB202537.240356
引用本文: 张静, 屈光辉, 张琳, 等. 基于PCSS触发TSS阵列的高压纳秒开关设计及应用[J]. 强激光与粒子束, 2025, 37: 055002. doi: 10.11884/HPLPB202537.240356
Zhang Jing, Qu Guanghui, Zhang Lin, et al. Design and application of high-voltage nanosecond switches based on PCSS triggered thyristor surge suppressor arrays[J]. High Power Laser and Particle Beams, 2025, 37: 055002. doi: 10.11884/HPLPB202537.240356
Citation: Zhang Jing, Qu Guanghui, Zhang Lin, et al. Design and application of high-voltage nanosecond switches based on PCSS triggered thyristor surge suppressor arrays[J]. High Power Laser and Particle Beams, 2025, 37: 055002. doi: 10.11884/HPLPB202537.240356

基于PCSS触发TSS阵列的高压纳秒开关设计及应用

doi: 10.11884/HPLPB202537.240356
基金项目: 陕西省自然科学基金项目(2020JM-462);陕西省自然科学基础研究计划项目(2024JC-YBMS-512)
详细信息
    作者简介:

    张 静,2220321317@stu.xaut.edu.cn

    通讯作者:

    屈光辉,qgh@xaut.edu.cn

  • 中图分类号: TN86;TN782

Design and application of high-voltage nanosecond switches based on PCSS triggered thyristor surge suppressor arrays

  • 摘要: 指标高、结构紧凑、稳定性好的固态高压脉冲开关对脉冲功率技术的进步具有重要意义。提出基于光电导开关(PCSS)和电涌抑制晶闸管(TSS)阵列的高压纳秒开关技术路线,采用便于实现高压隔离的PCSS作为TSS阵列的触发单元,研制了一种新型高压纳秒开关模块(PTTSSM)。研制的20 kV开关模块输出峰值电流23.7 A,脉冲宽度122.1 ns,上升时间和下降时间分别为55.9 ns和128.3 ns,尺寸为60 mm×60 mm×40 mm;100 kV模块输出峰值电压60~100 kV可调、最大输出峰值电流356 A,脉宽1.308 μs,上升和下降时间分别是160.4 ns和2.454 μs,尺寸为150 mm×100 mm×50 mm,均能够长时间稳定工作。基于新型高压纳秒开关模块的脉冲电源在有机废水处理实验中成功产生大量稳定低温等离子体,有效降解有机物,验证了开关模块驱动产生等离子体的可行性和有效性。
  • 图  1  电涌抑制晶闸管阵列

    Figure  1.  Thyristor Surge Suppressor (TSS) array

    图  2  脉冲电流波形

    Figure  2.  Waveforms of the pulse current

    图  3  PTTSSM脉冲系统框图

    Figure  3.  Pulse system block diagram of PCSS Triggering Thyristor Surge Suppressors Module (PTTSSM)

    图  4  GaAs PCSS结构示意图

    Figure  4.  Structure diagram of GaAs PCSS

    图  5  放电回路等效电路

    Figure  5.  Equivalent circuit of discharge loop

    图  6  PTTSSM实物图

    Figure  6.  Image of PTTSSMs

    图  7  高压测试平台

    Figure  7.  High voltage test platform

    图  8  20 kV PTTSSM脉冲电流波形

    Figure  8.  Pulse current waveforms of 20 kV PTTSSM

    图  9  100 kV PTTSSM脉冲电流波形

    Figure  9.  Pulse current waveform of 100 kV PTTSSM

    图  10  水处理系统结构图

    Figure  10.  Structural diagram of water treatment system

    图  11  脉冲放电产生等离子体现象

    Figure  11.  Pulsed discharge generates plasma

    图  12  亚甲基蓝溶液吸收光谱

    Figure  12.  Absorption spectra of methylene blue solution

    表  1  P3500SDLRP 参数列表

    Table  1.   Parameters list of P3500SDLRP

    model repetitive peak
    off-state voltage/V
    breakover
    voltage/V
    breakover
    current/mA
    holding
    current/mA
    critical rate of decrease of
    on-state current/(A·μs−1)
    P3500SDLRP 320 400 800 50 1000
    下载: 导出CSV

    表  2  光电导开关材料物理特性

    Table  2.   Physical properties of PCSS materials

    parameter band gap/
    eV
    electron mobility/
    (cm2·V−1·s−1)
    permittivity breakdown electric
    field/(MV·cm−1)
    saturation velocity/
    (107cm·V−1·s−1)
    thermal conductivity/
    (W·cm−1·K−1)
    resistivity/
    (Ω·cm)
    Si 1.12 1350 11.7 0.3 1.0 1.5 2.3×105
    GaAs 1.43 8500 12.9 0.4 1.3 0.5 >107
    SiC 3.0 800 9.7 3.0 2.0 4.8 105-106
    GaN 3.42 440 9.0 3.3 2.5 3.2 108
    下载: 导出CSV

    表  3  各元件参数列表

    Table  3.   List of parameters for each component

    component model power rating/W withstand voltage/kV value
    current limiting resistor R180-100 100 50 MΩ
    energy storage capacitor CSH50000K0.01-M8-225 100 0.01 μF
    load resistor water resistor adjustable
    下载: 导出CSV

    表  4  20 kV PTTSSM、100 kV PTTSSM功率参数

    Table  4.   Power parameters of 20 kV PTTSSM and 100 kV PTTSSM

    peak voltage/kV peak power/MW volume/mm3 peak power
    density/(W·cm−3)
    20 0.31 0.14×106 2.21
    100 35 0.75×106 46.7
    下载: 导出CSV
  • [1] 丛培天. 中国脉冲功率科技进展简述[J]. 强激光与粒子束, 2020, 32:025002 doi: 10.11884/HPLPB202032.200040

    Cong Peitian. Review of Chinese pulsed power science and technology[J]. High Power Laser and Particle Beams, 2020, 32: 025002 doi: 10.11884/HPLPB202032.200040
    [2] Akiyama H, Sakugawa T, Namihira T, et al. Industrial applications of pulsed power technology[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(5): 1051-1064. doi: 10.1109/TDEI.2007.4339465
    [3] Kim A A, Kovalchuk B M, Kumpyak E V, et al. Linear transformer driver with a 750-kA current and a 400-ns current risetime[J]. Russian Physics Journal, 1999, 42(12): 985-989. doi: 10.1007/BF02512407
    [4] Sugai T, Liu Wei, Tokuchi A, et al. Influence of a circuit parameter for plasma water treatment by an inductive energy storage circuit using semiconductor opening switch[J]. IEEE Transactions on Plasma Science, 2013, 41(4): 967-974. doi: 10.1109/TPS.2013.2251359
    [5] Jiang Weihua, Yatsui K. Compact pulsed power generators for industrial applications[J]. IEEJ Transactions on Fundamentals and Materials, 2004, 124(6): 451-455. doi: 10.1541/ieejfms.124.451
    [6] Renz G, Holzschuh F, Zeyfang E. PFNs switched with stacked SCRs at 20 kV, 500 J, and 100 Hz REP-rate[C]//Proceedings of the 11th IEEE International Pulsed Power Conference. 1997: 390-395.
    [7] 王磊, 章程, 高迎慧, 等. 晶闸管串联开关及同步触发系统研制[J]. 强激光与粒子束, 2015, 27:115001 doi: 10.11884/HPLPB201527.115001

    Wang Lei, Zhang Cheng, Gao Yinghui, et al. Design of series-connected thyristor switch and synchronous triggering circuit[J]. High Power Laser and Particle Beams, 2015, 27: 115001 doi: 10.11884/HPLPB201527.115001
    [8] Xu She, Huang A Q, Lucía O, et al. Review of silicon carbide power devices and their applications[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8193-8205. doi: 10.1109/TIE.2017.2652401
    [9] Okamura K, Naito F, Takayama K, et al. Development of a pulsed power supply utilizing 13 kV class SiC-MOSFETs[J]. Materials Science Forum, 2020, 1004: 1141-1147. doi: 10.4028/www.scientific.net/MSF.1004.1141
    [10] 李帅康, 黄邦斗, 章程, 等. 用于放电等离子体的重频固态纳秒脉冲电源[J]. 电力电子技术, 2021, 55(10):8-11 doi: 10.3969/j.issn.1000-100X.2021.10.004

    Li Shuaikang, Huang Bangdou, Zhang Cheng, et al. Repetitive solid-state nanosecond pulse power supply for discharge plasma[J]. Power Electronics, 2021, 55(10): 8-11 doi: 10.3969/j.issn.1000-100X.2021.10.004
    [11] 范华峰, 杨昊, 申巍, 等. 基于级串式MOSFET管的高压重频脉冲电源设计[J]. 国外电子测量技术, 2022, 41(8):153-158

    Fan Huafeng, Yang Hao, Shen Wei, et al. High voltage repetitive pulse power supply based on cascade MOSFET[J]. Foreign Electronic Measurement Technology, 2022, 41(8): 153-158
    [12] Zorngiebel V, Hecquard M, Spahn E, et al. Modular 50-kV IGBT switch for pulsed-power applications[J]. IEEE Transactions on Plasma Science, 2011, 39(1): 364-367. doi: 10.1109/TPS.2010.2068061
    [13] 宋礼伟. 高压大功率脉冲电源关键技术研究[D]. 武汉: 华中科技大学, 2019

    Song Liwei. Research on key technology of high voltage high power pulse power supplyD]. Wuhan: Huazhong University of Science and Technology, 2019
    [14] 李祥超, 周中山, 陈则煌, 等. 电涌抑制晶闸管(TSS)冲击性能的分析[J]. 电瓷避雷器, 2015(5):139-144

    Li Xiangchao, Zhou Zhongshan, Chen Zehuang, et al. Analysis on the impact performance of thyristor surge suppressors[J]. Insulators and Surge Arresters, 2015(5): 139-144
    [15] 孙艳玲, 杨萌, 宋朝阳, 等. 低导通电阻4H-SiC光导开关[J]. 强激光与粒子束, 2015, 27:125003 doi: 10.11884/HPLPB201527.125003

    Sun Yanling, Yang Meng, Song Chaoyang, et al. 4H-SiC photoconductive switch with low on-state resistance[J]. High Power Laser and Particle Beams, 2015, 27: 125003 doi: 10.11884/HPLPB201527.125003
    [16] 罗燕, 丁蕾, 赵毅, 等. SiC光导开关衬底与电极界面场强仿真与优化设计[J]. 强激光与粒子束, 2022, 34:063004 doi: 10.11884/HPLPB202234.210360

    Luo Yan, Ding Lei, Zhao Yi, et al. Optimization design and simulation of electric field at interface between substrate and electrode of photoconductive switch[J]. High Power Laser and Particle Beams, 2022, 34: 063004 doi: 10.11884/HPLPB202234.210360
    [17] 杨彪, 孙逊, 李阳凡, 等. 激光能量分布对GaN基光导开关导通特性的影响[J]. 强激光与粒子束, 2024, 36:115005 doi: 10.11884/HPLPB202436.240321

    Yang Biao, Sun Xun, Li Yangfan, et al. Influence of laser spot energy distribution on the on-state performance of GaN-based photoconductive switches[J]. High Power Laser and Particle Beams, 2024, 36: 115005 doi: 10.11884/HPLPB202436.240321
    [18] 屈光辉. GaAs光电导开关中载流子输运规律研究[D]. 西安: 西安理工大学, 2009

    Qu Guanghui. Study of the tranport of GaAs photoconductive semiconductor switches[D]. Xi'an: Xi'an University of Technology, 2009
    [19] 赵越, 王传伟, 王凌云, 等. 半导体放电管固体场畸变三电极开关[J]. 强激光与粒子束, 2012, 24(4):868-870 doi: 10.3788/HPLPB20122404.0868

    Zhao Yue, Wang Chuanwei, Wang Lingyun, et al. Semiconductor arrester solid field distortion three-electrode discharge switch[J]. High Power Laser and Particle Beams, 2012, 24(4): 868-870 doi: 10.3788/HPLPB20122404.0868
    [20] Du Zhehua, Lin Xin. Research progress in application of low temperature plasma technology for wastewater treatment[J]. IOP Conference Series: Earth and Environmental Science, 2020, 512: 012031. doi: 10.1088/1755-1315/512/1/012031
    [21] 韩家林, 兰青青, 李新月, 等. 低温等离子体协同催化处理有机废水进展[J]. 精细石油化工进展, 2023, 24(6):53-58

    Han Jialin, Lan Qingqing, Li Xinyue, et al. Progress of low temperature plasma synergistic catalytic treatment of organic wastewater[J]. Advances in Fine Petrochemicals, 2023, 24(6): 53-58
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  73
  • HTML全文浏览量:  38
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-11
  • 修回日期:  2025-02-13
  • 录用日期:  2025-02-13
  • 网络出版日期:  2025-03-08
  • 刊出日期:  2025-03-31

目录

    /

    返回文章
    返回