留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A new electromagnetic oscillation phenomenon on vanadium-compensation semi-insulating 4H-SiC PCSS

Lin Zhouyang Chen Zhipeng Sun Qian Zheng Zhong Xu Kun Jiang Shuqing Zhang Yuming Wang Yutian Hu Yanfei Guo Hui

林舟洋, 陈志鹏, 孙倩, 等. 一种基于钒掺4H-SiC光导开关的电磁振荡现象[J]. 强激光与粒子束, 2025, 37: 055003. doi: 10.11884/HPLPB202537.240358
引用本文: 林舟洋, 陈志鹏, 孙倩, 等. 一种基于钒掺4H-SiC光导开关的电磁振荡现象[J]. 强激光与粒子束, 2025, 37: 055003. doi: 10.11884/HPLPB202537.240358
Lin Zhouyang, Chen Zhipeng, Sun Qian, et al. A new electromagnetic oscillation phenomenon on vanadium-compensation semi-insulating 4H-SiC PCSS[J]. High Power Laser and Particle Beams, 2025, 37: 055003. doi: 10.11884/HPLPB202537.240358
Citation: Lin Zhouyang, Chen Zhipeng, Sun Qian, et al. A new electromagnetic oscillation phenomenon on vanadium-compensation semi-insulating 4H-SiC PCSS[J]. High Power Laser and Particle Beams, 2025, 37: 055003. doi: 10.11884/HPLPB202537.240358

一种基于钒掺4H-SiC光导开关的电磁振荡现象

doi: 10.11884/HPLPB202537.240358
详细信息
  • 中图分类号: TN78

A new electromagnetic oscillation phenomenon on vanadium-compensation semi-insulating 4H-SiC PCSS

Funds: supported by Major Projects of Shanxi Province (202101030201001)
More Information
  • 摘要:

    通过构建光导开关-金属线圈结构,发现了一种关于钒掺光导开关的电磁振荡现象。这种结构中光导开关响应于激光脉冲信号,金属线圈同时感应出振荡的脉冲信号。这种振荡信号的产生与输入偏压、激光能量、脉冲电路元件、光导开关的形状及结构无关,而与开关的输出特性有关。使用光导天线中的电流瞬冲模型可以较好地解释这一物理现象,通过在SiC半导体上制备欧姆接触电极形成光导开关,当超快激光脉冲照射材料表面时生成大量的光生载流子,同时在电极之间施加偏压信号。此时开关内部在电场作用下形成瞬态电流,进而形成电偶极结构,辐射出电磁波,金属线圈接收并产生振荡信号。

  • Figure  1.  Schematic diagram of switching structure of a vertical 4H-SiC PCSS

    Figure  2.  Vertical 4H-SiC test circuit

    Figure  3.  Output performance of the vertical PCSS

    Figure  4.  Voltage output waveforms of vertical PCSS-1 turn coil module with 5 kV and 10 kV bias voltages

    Figure  5.  Voltage output waveforms of vertical PCSS-2 turns coil module with 5 kV and 10 kV bias voltages

    Figure  6.  Voltage output waveforms of vertical PCSS-6 turns coil module with 5 kV and 10 kV bias voltages

    Figure  7.  Experimental results

    Figure  8.  Output waveforms and antenna schematic

    Table  1.   Vertical PCSS test parameters

    Vin/kV Vmax/V Imax/A
    3 1960 39.2
    5 3152 63.04
    7 4423 88.46
    9 5490 109.8
    11 5882 117.6
    13 6823 136.46
    下载: 导出CSV

    Table  2.   PCSS-Different turns coil test Parameters recorded in

    Vin/kV n Vmax/V Imax/A Vmax+c/V N
    5 1 2745 54 1070 13
    5 2 2530 50 1540 10
    5 6 2745 54 186 12
    10 1 5713 114 2790 13
    10 2 5061 101 2980 10
    10 6 5647 112 489 13
    下载: 导出CSV
  • [1] Akiyama H, Katsuki S, Redondo L, et al. Pulsed power technology[M]//Akiyama H, Heller R. Bioelectrics. Tokyo: Springer, 2017: 41-107.
    [2] Shen Yi, Wang Wei, Liu Yi, et al. A compact 300 kV solid-state high-voltage nanosecond generator for dielectric wall accelerator[J]. Review of Scientific Instruments, 2015, 86: 055110. doi: 10.1063/1.4921396
    [3] Avgustinovich V A, Artemenko S N, Igumnov V S, et al. Forming nanosecond microwave pulses by transformation of resonant cavity mode[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(5): 1607-1613. doi: 10.1109/TMTT.2016.2549278
    [4] Mi Yan, Xu Jin, Yao Chenguo, et al. Electroporation modeling of a single cell exposed to high-frequency nanosecond pulse bursts[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(2): 461-468. doi: 10.1109/TDEI.2018.007777
    [5] Chu Xu, Liu Jinliang, Xun Tao, et al. MHz repetition frequency, hundreds kilowatt, and sub-nanosecond agile pulse generation based on linear 4H-SiC photoconductive semiconductor[J]. IEEE Transactions on Electron Devices, 2022, 69(2): 597-603. doi: 10.1109/TED.2021.3138950
    [6] Sullivan J S. High power operation of a nitrogen doped, vanadium compensated, 6H-SiC extrinsic photoconductive switch[J]. Applied Physics Letters, 2014, 104: 172106. doi: 10.1063/1.4875258
    [7] Wang Wei, Xia Liansheng, Chen Yi, et al. Research on synchronization of 15 parallel high gain photoconductive semiconductor switches triggered by high power pulse laser diodes[J]. Applied Physics Letters, 2015, 106: 022108. doi: 10.1063/1.4906035
    [8] Zetterling C M. Process technology for silicon carbide devices[M]. Stevenage: IET, 2002.
    [9] Doǧan S, Teke A, Huang D, et al. 4H-SiC photoconductive switching devices for use in high-power applications[J]. Applied Physics Letters, 2003, 82(18): 3107-3109. doi: 10.1063/1.1571667
    [10] Wu Qilin, Zhao Yuxin, Xun Tao, et al. Initial test of optoelectronic high power microwave generation from 6H-SiC photoconductive switch[J]. IEEE Electron Device Letters, 2019, 40(7): 1167-1170. doi: 10.1109/LED.2019.2918954
    [11] Luan Chongbiao, Li Boting, Zhao Juan, et al. A new phenomenon in semi-insulating 4H-SiC photoconductive semiconductor switches[J]. IEEE Transactions on Electron Devices, 2018, 65(1): 172-175. doi: 10.1109/TED.2017.2777600
    [12] Wang Langning, Chu Xu, Wu Qilin, et al. Effects of high-field velocity saturation on the performance of V-doped 6H silicon-carbide photoconductive switches[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(4): 4879-4886. doi: 10.1109/JESTPE.2020.3038561
    [13] Xiao Longfei, Yang Xianglong, Duan Peng, et al. Effect of electron avalanche breakdown on a high-purity semi-insulating 4H-SiC photoconductive semiconductor switch under intrinsic absorption[J]. Applied Optics, 2018, 57(11): 2804-2808. doi: 10.1364/AO.57.002804
    [14] Sun Xun, Xiao Longfei, Luan Chongbiao, et al. Low on-resistance and high peak voltage transmission efficiency based on high-purity 4H-SiC photoconductive semiconductor switch[J]. IEEE Transactions on Power Electronics, 2024, 39(2): 2013-2019. doi: 10.1109/TPEL.2023.3320124
    [15] Qin Yan, Luan Chongbiao, Xiao Longfei, et al. Investigating the performance of a lateral 4H-SiC photoconductive switch with a sinking-electrode structure[J]. IEEE Transactions on Electron Devices, 2024, 71(1): 727-732. doi: 10.1109/TED.2023.3335915
    [16] Zhu Li, Hu Long, Shen Xin, et al. Improved current and jitter performances of photoconductive semiconductor switch based on reduced graphene oxide/metal electrode[J]. IEEE Electron Device Letters, 2023, 44(2): 289-292. doi: 10.1109/LED.2022.3227174
    [17] Zheng Zhong, Huang Wei, Han Weiwei, et al. Analyzing the effects of aluminum-doped ZnO and Ag layers for the transparent electrode vertical PCSS[J]. IEEE Transactions on Electron Devices, 2020, 67(6): 2414-2417. doi: 10.1109/TED.2020.2989244
    [18] Cao Penghui, Huang Wei, Guo Hui, et al. Performance of a vertical 4H-SiC photoconductive switch with AZO transparent conductive window and silver mirror reflector[J]. IEEE Transactions on Electron Devices, 2018, 65(5): 2047-2051. doi: 10.1109/TED.2018.2815634
    [19] Darrow J T, Zhang X C, Auston D H, et al. Saturation properties of large-aperture photoconducting antennas[J]. IEEE Journal of Quantum Electronics, 1992, 28(6): 1607-1616. doi: 10.1109/3.135314
    [20] Piao Zhisheng, Tani M, Sakai K. Carrier dynamics and terahertz radiation in photoconductive antennas[J]. Japanese Journal of Applied Physics, 2000, 39: 96.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  89
  • HTML全文浏览量:  51
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-12
  • 修回日期:  2025-01-23
  • 录用日期:  2025-01-23
  • 网络出版日期:  2025-02-19
  • 刊出日期:  2025-03-31

目录

    /

    返回文章
    返回